Những câu hỏi liên quan
TT
Xem chi tiết
MK
Xem chi tiết
TN
Xem chi tiết
H24
1 tháng 5 2021 lúc 19:34

Vì ΔABC vuông tại A

==> BC2 = AC+AB2 ( Định lý Pitago )

       BC2 = 42 + 32 

       BC= 27

==> BC = √27

Bình luận (0)
NT
1 tháng 5 2021 lúc 22:51

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Vậy: BC=5cm

Bình luận (0)
NT
1 tháng 5 2021 lúc 22:52

b) Xét ΔABC có AC>AB(4cm>3cm)

mà góc đối diện với cạnh AC là \(\widehat{ABC}\)

và góc đối diện với cạnh AB là \(\widehat{ACB}\)

nên \(\widehat{B}>\widehat{C}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)

Bình luận (0)
H24
Xem chi tiết
H24
22 tháng 12 2023 lúc 21:44

a)

Xét 2 tam giác vuông ABC và HAC có:

\(\widehat{C}\) chung

=> tg ABC \(\sim\) td HAC (g.g)

=> \(\widehat{ABC}=\widehat{HAC}\)

b)

Xét 2 tg vuông ACB và HAB có:

\(\widehat{B}\) chung

=> tg ACB \(\sim\) tg HAB (g.g)

=> \(\widehat{ACB}=\widehat{HAB}\)

Bình luận (2)
DF
Xem chi tiết
DF
Xem chi tiết
TH
10 tháng 1 2021 lúc 9:03

Đẳng thức cần chứng minh tương đương với:

\(\dfrac{2a+b+c}{\left(a+b\right)\left(a+c\right)}=\dfrac{3}{a+b+c}\)

\(\Leftrightarrow\left(2a+b+c\right)\left(a+b+c\right)=3\left(a^2+ab+bc+ca\right)\)

\(\Leftrightarrow2a^2+b^2+c^2+3ab+3ac+2bc=3a^2+3ab+3bc+3ca\)

\(\Leftrightarrow a^2=b^2+c^2-bc\).

Đây chính là định lý hàm cos cho tam giác ABC có \(\widehat{A}=60^o\).

(Phần chứng minh bạn có thể xem ở Cho tam giác ABC có Â=60 độ. Chứng minh rằng BC^2=AB^2 AC^2-AB.BC - Hoc24)

Bình luận (0)
LL
Xem chi tiết
NM
2 tháng 10 2021 lúc 21:05

1.

\(a,\sin\widehat{B}=\sin60^0=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}\Leftrightarrow AC=\dfrac{12\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\\ b,AC^2=CH\cdot BC\left(HTL.\Delta\right)\\ \Rightarrow CH=\dfrac{AC^2}{BC}=9\left(cm\right)\)

 

Bình luận (0)
NH
2 tháng 10 2021 lúc 21:08

Tim Gia Tri Nho Nhat Cua 

a) A = x - 4 can x + 9

b) B = x - 3 can x - 10 

c ) C = x - can x + 1 

d ) D = x + can x + 2 

Bình luận (0)
NT
2 tháng 10 2021 lúc 21:09

Bài 2:

a: Xét ΔABC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}\)

\(\Leftrightarrow BC=6:\sin60^0=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)

Bình luận (0)
N2
Xem chi tiết
NT
11 tháng 1 2024 lúc 11:11

loading...

loading...

Bình luận (0)
N2
Xem chi tiết
NT
11 tháng 1 2024 lúc 10:27

Câu 2:

a: ΔDEF vuông tại E

=>\(\widehat{EDF}+\widehat{EFD}=90^0\)

=>\(\widehat{EFD}+30^0=90^0\)

=>\(\widehat{EFD}=60^0\)

ΔDEF vuông tại E

=>\(ED^2+EF^2=FD^2\)

=>\(ED^2=10^2-6^2=64\)

=>\(ED=\sqrt{64}=8\left(cm\right)\)

b: Xét ΔIFE và ΔIDP có

\(\widehat{IFE}=\widehat{IDP}\)(hai góc so le trong, EF//DP)

IF=ID

\(\widehat{FIE}=\widehat{DIP}\)(hai góc đối đỉnh)

Do đó: ΔIFE=ΔIDP

=>IE=IP

Câu 1:

a: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ACB}=90^0-50^0=40^0\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=5^2-3^2=16\)

=>\(AC=\sqrt{16}=4\left(cm\right)\)

b: Xét ΔMAB và ΔMDC có

\(\widehat{MBA}=\widehat{MCD}\)(hai góc so le trong, BA//CD)

MB=MC

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

Do đó: ΔMAB=ΔMDC

=>MA=MD

Bình luận (0)
TL
Xem chi tiết
NT
30 tháng 1 2024 lúc 19:36

Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC
=>AB=DC

mà AB<AC

nên CD<CA

Xét ΔCDA có CD<CA

mà \(\widehat{CAD};\widehat{CDA}\) lần lượt là góc đối diện của cạnh CD,CA

nên \(\widehat{CAD}< \widehat{CDA}\)

mà \(\widehat{CDA}=\widehat{BAM}\)(ΔMAB=ΔMDC)

nên \(\widehat{BAM}>\widehat{CAM}\)

Bình luận (0)