Violympic toán 9

DF

cho ΔABC có \(\widehat{A}=60^o\). đaẹt BC=a; CA=b; AB=c. CMR: \(\dfrac{1}{a+b}+\dfrac{1}{a+c}=\dfrac{3}{a+b+c}\)

TH
10 tháng 1 2021 lúc 9:03

Đẳng thức cần chứng minh tương đương với:

\(\dfrac{2a+b+c}{\left(a+b\right)\left(a+c\right)}=\dfrac{3}{a+b+c}\)

\(\Leftrightarrow\left(2a+b+c\right)\left(a+b+c\right)=3\left(a^2+ab+bc+ca\right)\)

\(\Leftrightarrow2a^2+b^2+c^2+3ab+3ac+2bc=3a^2+3ab+3bc+3ca\)

\(\Leftrightarrow a^2=b^2+c^2-bc\).

Đây chính là định lý hàm cos cho tam giác ABC có \(\widehat{A}=60^o\).

(Phần chứng minh bạn có thể xem ở Cho tam giác ABC có Â=60 độ. Chứng minh rằng BC^2=AB^2 AC^2-AB.BC - Hoc24)

Bình luận (0)

Các câu hỏi tương tự
DF
Xem chi tiết
QD
Xem chi tiết
HT
Xem chi tiết
VD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
YT
Xem chi tiết
AP
Xem chi tiết
BB
Xem chi tiết