Những câu hỏi liên quan
NP
Xem chi tiết
NT
19 tháng 7 2019 lúc 17:14

\({\mathop{\rm tanx}\nolimits} = tan\dfrac{{3\pi }}{{11}} \Leftrightarrow x = \dfrac{{3\pi }}{{11}} + k\pi \Rightarrow \dfrac{{3\pi }}{{11}} + k\pi \in \left( {\dfrac{\pi }{4};2\pi } \right) \Rightarrow k = 0,k = 1\)

Chọn B

Bình luận (0)
H24
Xem chi tiết
NT
24 tháng 7 2023 lúc 0:24

Chọn B

Bình luận (0)
QL
22 tháng 9 2023 lúc 10:44

Xét phương trình \(tanx = 3\)\( \Leftrightarrow \;x{\rm{ }} \approx {\rm{ }}1,25{\rm{ }} + {\rm{ }}k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}\).

Do \( - \frac{\pi }{2} < x < \frac{{7\pi }}{3} \Leftrightarrow  - \frac{\pi }{2} < 1,25{\rm{ }} + {\rm{ }}k\pi  < \frac{{7\pi }}{3}\)\( \Leftrightarrow  - 0,9 < k < 1,94,\)\(k\; \in \;\mathbb{Z}\).

Mà k ∈ ℤ nên k ∈ {0; 1}.

Vậy có 2 nghiệm của phương trình đã cho nằm trong khoảng \(\left( { - \frac{\pi }{2};\frac{{7\pi }}{3}} \right)\).

Đáp án: B

Bình luận (0)
TN
Xem chi tiết
NL
20 tháng 8 2020 lúc 18:59

1.

\(\Leftrightarrow1-cos^22x-2\left(\frac{1+cos2x}{2}\right)+\frac{3}{4}=0\)

\(\Leftrightarrow-cos^22x-cos2x+\frac{3}{4}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\frac{1}{2}\\cos2x=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=\pm\frac{\pi}{3}+k2\pi\)

\(\Leftrightarrow x=\pm\frac{\pi}{6}+k\pi\)

2.

\(2\left(2cos^2x-1\right)+2cosx-\sqrt{2}=0\)

\(\Leftrightarrow4cos^2x+2cosx-2-\sqrt{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{\sqrt{2}}{2}\\cosx=-\frac{1+\sqrt{2}}{2}< -1\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=-\frac{\pi}{4}+l2\pi\end{matrix}\right.\)\(-\frac{\pi}{2}< x< \frac{5\pi}{2}\Rightarrow\left\{{}\begin{matrix}-\frac{\pi}{2}< \frac{\pi}{4}+k2\pi< \frac{5\pi}{2}\\-\frac{\pi}{2}< -\frac{\pi}{4}+l2\pi< \frac{5\pi}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}k=0;1\\l=0;1\end{matrix}\right.\) \(\Rightarrow x=\left\{\frac{\pi}{4};\frac{9\pi}{4};-\frac{\pi}{4};\frac{7\pi}{4}\right\}\)

Có 4 nghiệm

Bình luận (0)
NL
20 tháng 8 2020 lúc 19:03

3. ĐKXĐ: ...

\(2tanx-\frac{2}{tanx}-3=0\)

\(\Leftrightarrow2tan^2x-3tanx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-\frac{1}{2}\\tanx=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-\frac{1}{2}\right)+k\pi\\x=arctan\left(2\right)+k\pi\end{matrix}\right.\)

Có 3 nghiệm trong khoảng đã cho \(x=arctan\left(-\frac{1}{2}\right);x=arctan\left(-\frac{1}{2}\right)+\pi;x=arctan\left(2\right)\)

Bình luận (0)
NL
20 tháng 8 2020 lúc 19:11

4. ĐKXĐ: ...

\(\Leftrightarrow\sqrt{3}\left(1+cot^2x\right)=3cotx+\sqrt{3}\)

\(\Leftrightarrow cot^2x-\sqrt{3}cotx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cotx=0\\cotx=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Nghiệm âm lớn nhất của pt là \(x=-\frac{\pi}{2}\)

5. ĐKXĐ; ...

\(\Leftrightarrow tan^2x-\left(1+\sqrt{3}\right)tanx+\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\sqrt{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{3}+l\pi\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-2019\pi< \frac{\pi}{4}+k\pi< 2019\pi\\-2019\pi< \frac{\pi}{3}+l\pi< 2019\pi\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-2019\le k\le2018\\-2019\le l\le2018\end{matrix}\right.\)

Tổng các nghiệm: \(2.\left(-2019\pi\right)+4038\left(\frac{\pi}{3}+\frac{\pi}{4}\right)=-\frac{3365\pi}{2}< -3\)

Đáp án A đúng

Bình luận (0)
NT
Xem chi tiết
NL
15 tháng 7 2020 lúc 17:14

a/ \(\Leftrightarrow tanx.tan\frac{\pi}{9}-1=tan\frac{\pi}{90}\left(tanx+tan\frac{\pi}{9}\right)\)

\(\Leftrightarrow\frac{tanx+tan\frac{\pi}{9}}{1-tanx.tan\frac{\pi}{9}}=-\frac{1}{tan\frac{\pi}{90}}\)

\(\Leftrightarrow tan\left(x+\frac{\pi}{9}\right)=tan\left(\frac{23\pi}{45}\right)\)

\(\Rightarrow x+\frac{\pi}{9}=\frac{23\pi}{45}+k\pi\)

\(\Rightarrow x=\frac{2\pi}{5}+k\pi\)

Do \(-2\pi< x< 2\pi\Rightarrow-2\pi< \frac{2\pi}{5}+k\pi< 2\pi\)

\(\Rightarrow k=\left\{-2;-1;0;1;2\right\}\)

\(\Rightarrow x=\left\{-\frac{8\pi}{5};-\frac{3\pi}{5};\frac{2\pi}{5};\frac{7\pi}{5};\frac{12\pi}{5}\right\}\)

Bình luận (0)
NL
15 tháng 7 2020 lúc 17:17

b/

ĐKXĐ: \(cos2x\ne0\)

\(\Leftrightarrow tan^22x+1+tan^22x=7\)

\(\Leftrightarrow tan^22x=3\)

\(\Rightarrow\left[{}\begin{matrix}tan2x=\sqrt{3}\\tan2x=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tan2x=tan60^0\\tan2x=tan\left(-60^0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=60^0+k180^0\\2x=-60^0+k180^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=30^0+k180^0\\x=-30^0+k180^0\end{matrix}\right.\)

Bạn tự tìm nghiệm thuộc khoảng đã cho nhé

Bình luận (0)
NL
15 tháng 7 2020 lúc 17:22

c/ ĐKXĐ: \(cosx\ne0\)

\(\Leftrightarrow tan^3x+1+tan^2x+4\sqrt{3}\left(1+tanx\right)=8+7tanx\)

\(\Leftrightarrow tan^2x\left(1+tanx\right)+\left(4\sqrt{3}-7\right)\left(1+tanx\right)=0\)

\(\Leftrightarrow\left(tan^2x-7+4\sqrt{3}\right)\left(1+tanx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tan^2x=7-4\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=2-\sqrt{3}\\tanx=-2+\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=tan\left(-\frac{\pi}{4}\right)\\tanx=tan\left(\frac{\pi}{12}\right)\\tanx=tan\left(-\frac{\pi}{12}\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{12}+k\pi\\x=-\frac{\pi}{12}+k\pi\end{matrix}\right.\)

Bạn tự tìm x thuộc khoảng đã cho

Bình luận (0)
JE
Xem chi tiết
NL
20 tháng 7 2020 lúc 21:48

a/

\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=tan\left(\frac{2\pi}{3}-3x\right)\)

\(\Rightarrow x+\frac{\pi}{3}=\frac{2\pi}{3}-3x+k\pi\)

\(\Rightarrow4x=\frac{\pi}{3}+k\pi\)

\(\Rightarrow x=\frac{\pi}{12}+\frac{k\pi}{4}\)

b/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{3}-\frac{3}{tanx}=0\)

\(\Leftrightarrow tanx=\sqrt{3}\Rightarrow x=\frac{\pi}{3}+k\pi\)

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 22:59

a) Tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {\frac{\pi }{2} + k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \tan \left( { - x} \right) =  - \tan x =  - f\left( x \right),\;\forall x\; \in \;D\)

Vậy \(y = \tan x\) là hàm số lẻ.

b)

    \(x\)

     \( - \frac{\pi }{3}\)

      \( - \frac{\pi }{4}\)

      \( - \frac{\pi }{6}\)

     \(0\)

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

  \(\tan x\)

\( - \sqrt 3 \)

   \( - 1\)

      \( - \frac{{\sqrt 3 }}{3}\)

     \(0\)

\(\frac{{\sqrt 3 }}{3}\)

      \(1\)

\(\sqrt 3 \)

 

c) Từ đồ thị trên, ta thấy hàm số \(y = \tan x\) có tập xác định là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\), tập giá trị là \(\mathbb{R}\) và đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right)\).

Bình luận (0)
PA
Xem chi tiết
JE
Xem chi tiết
NL
16 tháng 9 2020 lúc 15:06

a.

ĐKXĐ: ...

\(\Leftrightarrow tan\left(3x-\frac{\pi}{3}\right)=tan\left(-x\right)\)

\(\Leftrightarrow3x-\frac{\pi}{3}=-x+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{4}\)

b.

ĐKXĐ: ...

\(\Leftrightarrow cot\left(x-\frac{\pi}{4}\right)=cot\left(-x\right)\)

\(\Leftrightarrow x-\frac{\pi}{4}=-x+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{2}\)

Bình luận (0)
NL
16 tháng 9 2020 lúc 15:08

c.

ĐKXĐ: ...

\(\Leftrightarrow cot\left(2x-\frac{3\pi}{4}\right)=cot\left(\frac{2\pi}{3}-x\right)\)

\(\Leftrightarrow2x-\frac{3\pi}{4}=\frac{2\pi}{3}-x+k\pi\)

\(\Leftrightarrow x=\frac{17\pi}{36}+\frac{k\pi}{3}\)

d.

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=cos\left(\frac{3\pi}{4}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=\frac{3\pi}{4}-x+k2\pi\\2x+\frac{\pi}{3}=x-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{13\pi}{12}+k2\pi\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NL
18 tháng 10 2020 lúc 7:33

Câu 2 bạn coi lại đề

3.

\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)

\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)

\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)

\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
18 tháng 10 2020 lúc 7:33

4.

Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm

5.

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)

\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)

\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)

\(\Leftrightarrow2sin^3x-sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)

\(\Leftrightarrow...\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
18 tháng 10 2020 lúc 7:34

6.

\(sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-2\sqrt{3}cosx.sin2x.cos2x\)

\(\Leftrightarrow sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-\sqrt{3}cosx.sin4x\)

\(\Leftrightarrow sin4x\left(sinx+\sqrt{3}cosx\right)=\sqrt{2}sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow sin4x\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)-\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow sin4x.sin\left(x+\frac{\pi}{3}\right)-\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow\left(sin4x-\frac{\sqrt{2}}{2}\right)sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin4x=\frac{\sqrt{2}}{2}\\sin\left(x+\frac{\pi}{3}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)