Bài 2: Phương trình lượng giác cơ bản

NT

giải pt

a) \(tanx.tan\frac{\pi}{9}=1+tan\frac{\pi}{9}.tan\frac{\pi}{90}+tanx.tan\frac{\pi}{90};\left(-2\pi< x< 2\pi\right)\)

b) \(tan^22x+\frac{1}{cos^22x}=7;\left(0< x< 360^0\right)\)

c) \(tan^3x+\frac{1}{cos^2x}+4\sqrt{3}\left(1+tanx\right)=8+7tanx;\left(-\pi< x< \pi\right)\)

NL
15 tháng 7 2020 lúc 17:14

a/ \(\Leftrightarrow tanx.tan\frac{\pi}{9}-1=tan\frac{\pi}{90}\left(tanx+tan\frac{\pi}{9}\right)\)

\(\Leftrightarrow\frac{tanx+tan\frac{\pi}{9}}{1-tanx.tan\frac{\pi}{9}}=-\frac{1}{tan\frac{\pi}{90}}\)

\(\Leftrightarrow tan\left(x+\frac{\pi}{9}\right)=tan\left(\frac{23\pi}{45}\right)\)

\(\Rightarrow x+\frac{\pi}{9}=\frac{23\pi}{45}+k\pi\)

\(\Rightarrow x=\frac{2\pi}{5}+k\pi\)

Do \(-2\pi< x< 2\pi\Rightarrow-2\pi< \frac{2\pi}{5}+k\pi< 2\pi\)

\(\Rightarrow k=\left\{-2;-1;0;1;2\right\}\)

\(\Rightarrow x=\left\{-\frac{8\pi}{5};-\frac{3\pi}{5};\frac{2\pi}{5};\frac{7\pi}{5};\frac{12\pi}{5}\right\}\)

Bình luận (0)
NL
15 tháng 7 2020 lúc 17:17

b/

ĐKXĐ: \(cos2x\ne0\)

\(\Leftrightarrow tan^22x+1+tan^22x=7\)

\(\Leftrightarrow tan^22x=3\)

\(\Rightarrow\left[{}\begin{matrix}tan2x=\sqrt{3}\\tan2x=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tan2x=tan60^0\\tan2x=tan\left(-60^0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=60^0+k180^0\\2x=-60^0+k180^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=30^0+k180^0\\x=-30^0+k180^0\end{matrix}\right.\)

Bạn tự tìm nghiệm thuộc khoảng đã cho nhé

Bình luận (0)
NL
15 tháng 7 2020 lúc 17:22

c/ ĐKXĐ: \(cosx\ne0\)

\(\Leftrightarrow tan^3x+1+tan^2x+4\sqrt{3}\left(1+tanx\right)=8+7tanx\)

\(\Leftrightarrow tan^2x\left(1+tanx\right)+\left(4\sqrt{3}-7\right)\left(1+tanx\right)=0\)

\(\Leftrightarrow\left(tan^2x-7+4\sqrt{3}\right)\left(1+tanx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tan^2x=7-4\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=2-\sqrt{3}\\tanx=-2+\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=tan\left(-\frac{\pi}{4}\right)\\tanx=tan\left(\frac{\pi}{12}\right)\\tanx=tan\left(-\frac{\pi}{12}\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{12}+k\pi\\x=-\frac{\pi}{12}+k\pi\end{matrix}\right.\)

Bạn tự tìm x thuộc khoảng đã cho

Bình luận (0)

Các câu hỏi tương tự
JE
Xem chi tiết
NA
Xem chi tiết
TN
Xem chi tiết
SB
Xem chi tiết
H24
Xem chi tiết
PG
Xem chi tiết
AT
Xem chi tiết
JE
Xem chi tiết
PT
Xem chi tiết