Những câu hỏi liên quan
QN
Xem chi tiết
PB
Xem chi tiết
CT
7 tháng 8 2019 lúc 17:51

Đáp án C

Đường tròn (C) có tâm  I( -1 ; 3) và bán kính R= 2

Do d’// d nên phương trình của d’ có dạng : 3x- 4y + c= 0.

Để d’ chắn trên (C) một dây cung có độ dài lớn nhất thì d’ phải đi qua tâm I của đường tròn ( trong các dây của đường tròn dây lớn nhất là đường kính).

Do I( -1 ; 3) thuộc d’ nên : 3.(-1) – 4.3 +c= 0

=> c = 15

Vậy đường thẳng cần tìm là d’ : 3x- 4y + 15= 0.

Bình luận (0)
QL
Xem chi tiết
HM
1 tháng 10 2023 lúc 20:03

a) Đây không phải là dạng của phương trình đường tròn (hệ số \({y^2}\) bằng -1).

b) Vì \({a^2} + {b^2} - c = {1^2} + {\left( { - 2} \right)^2} - 6 < 0\) nên phương trình đã cho không là phương trình tròn.

c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {2^2} - 1 = 11 > 0\) nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;2} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c}  = \sqrt {11} \).

Bình luận (0)
TV
Xem chi tiết
NL
26 tháng 3 2021 lúc 22:02

Đường tròn (C) tâm \(I\left(2;4\right)\) bán kính \(R=5\)

Điểm A thuộc (C) nên tiếp tuyến d qua A vuông góc IA

\(\Rightarrow\overrightarrow{AI}=\left(3;4\right)\Rightarrow\) đường thẳng d nhận (3;4) là 1 vtpt

Phương trình d:

\(3\left(x+1\right)+4\left(y-0\right)=0\Leftrightarrow3x+4y+3=0\)

Bình luận (0)
QL
Xem chi tiết
HM
27 tháng 9 2023 lúc 0:08

a) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 3,b = 4,c = 21\)

Ta có \({a^2} + {b^2} - c = 9 + 16 - 21 = 4 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(3;4)\) và có bán kính \(R = \sqrt 4  = 2\)

b) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 1,b =  - 2,c = 2\)

Ta có \({a^2} + {b^2} - c = 1 + 4 - 2 = 3 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(1; - 2)\) và có bán kính \(R = \sqrt 3 \)

c) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = \frac{3}{2},b =  - 1,c = 7\)

Ta có \({a^2} + {b^2} - c = \frac{9}{4} + 1 - 7 =  - \frac{{15}}{4} < 0\). Vậy đây không là phương trình đường tròn.

d) Phương trình không có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) nên phương trình đã cho không là phương trình đường tròn.

Bình luận (0)
AD
Xem chi tiết
LP
8 tháng 7 2023 lúc 7:14

 Gọi O là tâm của (C) thì dễ thấy \(O\left(2;-1\right)\) và bán kính \(R=5\)

 Ta tính khoảng cách từ O tới (d):

\(d\left(O,d\right)=\dfrac{\left|3.2-4\left(-1\right)+m\right|}{\sqrt{3^2+\left(-4\right)^2}}=\dfrac{\left|10+m\right|}{5}\) 

Để (d) là tiếp tuyến của (C) thì \(d\left(O,d\right)=R\) \(\Leftrightarrow\dfrac{\left|10+m\right|}{5}=5\) \(\Leftrightarrow\left|m+10\right|=25\). Nếu \(m\ge-10\) thì suy ra \(m=15\) (tm), nếu \(m< -10\) thì suy ra \(m=-35\) (tm)

Vậy để (d) là tiếp tuyến của (C) thì \(m=15\) hoặc \(m=-35\).

Bình luận (0)
H24
Xem chi tiết
NT
12 tháng 5 2023 lúc 8:21

1: x^2+y^2+6x-2y=0

=>x^2+6x+9+y^2-2y+1=10

=>(x+3)^2+(y-1)^2=10

=>R=căn 10; I(-3;1)

Vì (d1)//(d) nên (d1): x-3y+c=0

Theo đề, ta có: d(I;(d1))=căn 10

=>\(\dfrac{\left|-3\cdot1+1\cdot\left(-3\right)+c\right|}{\sqrt{1^2+\left(-3\right)^2}}=\sqrt{10}\)

=>|c-6|=10

=>c=16 hoặc c=-4

Bình luận (0)
JP
Xem chi tiết
NT
25 tháng 4 2023 lúc 9:06

(x-1)^2+(y-1)^2=25

=>R=5; I(1;1)

\(d\left(I;\text{Δ}\right)=\dfrac{\left|1\cdot3+1\cdot4+33\right|}{\sqrt{3^2+4^2}}=\dfrac{40}{5}=8>5\)

=>Δ nằm ngoài (C)

Lập đường thẳng đi qua I và vuông góc với 3x+4y+33=0

=>(d'): -4x+3y+c=0

Thay x=1 và y=1 vào (d'), ta được:

c-4+3=0

=>c=1

=>-4x+3y+1=0

-4x+3y+1=0 và (x-1)^2+(y-1)^2=25

=>-4x=-3y-1 và (x-1)^2+(y-1)^2=25

=>x=3/4y+1/4 và (3/4y+1/4-1)^2+(y-1)^2=25

=>9/16(y-1)^2+(y-1)^2=25 và x=3/4y+1/4

=>(y-1)^2=16 và x=3/4y+1/4

=>(y=5 hoặc y=-3) và x=3/4y+1/4

=>(x,y)=(4;5) hoặc (x,y)=(-2;-3)

=>M1(4;5); M2(-2;-3)

Δ: 3x+4y+33=0; (d'): -4x+3y+1=0

=>H(-19/5; -27/5)

\(M_1H=\sqrt{\left(-\dfrac{19}{5}-4\right)^2+\left(-\dfrac{27}{5}-5\right)^2}=13\)

\(M_2H=\sqrt{\left(-\dfrac{19}{5}+2\right)^2+\left(-\dfrac{27}{5}+3\right)^2}=3\)

=>\(d_{min}=3;d_{max}=13\)

Bình luận (0)
NN
Xem chi tiết
NL
11 tháng 7 2021 lúc 14:42

Đường tròn (C) tâm \(O\left(2;3\right)\) bán kính \(R=10\)

Gọi I là trung điểm AB \(\Rightarrow IO\perp AB\) 

\(\Rightarrow IO=d\left(O;AB\right)=\dfrac{\left|3.2-4.3+1\right|}{\sqrt{3^2+4^2}}=1\)

Áp dụng định lý Pitago:

\(IA=\sqrt{OA^2-OA^2}=\sqrt{100-1}=3\sqrt{11}\)

\(\Rightarrow AB=2IA=6\sqrt{11}\)

Bình luận (0)