Bài 3: Đường tròn trong mặt phẳng tọa độ

QL

Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm tọa độ tâm và bán kính của đường tròn đó.

a) \({x^2} + {y^2} - 6x - 8y + 21 = 0\)

b) \({x^2} + {y^2} - 2x + 4y + 2 = 0\)

c) \({x^2} + {y^2} - 3x + 2y + 7 = 0\)

d) \(2{x^2} + 2{y^2} + x + y - 1 

HM
27 tháng 9 2023 lúc 0:08

a) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 3,b = 4,c = 21\)

Ta có \({a^2} + {b^2} - c = 9 + 16 - 21 = 4 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(3;4)\) và có bán kính \(R = \sqrt 4  = 2\)

b) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 1,b =  - 2,c = 2\)

Ta có \({a^2} + {b^2} - c = 1 + 4 - 2 = 3 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(1; - 2)\) và có bán kính \(R = \sqrt 3 \)

c) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = \frac{3}{2},b =  - 1,c = 7\)

Ta có \({a^2} + {b^2} - c = \frac{9}{4} + 1 - 7 =  - \frac{{15}}{4} < 0\). Vậy đây không là phương trình đường tròn.

d) Phương trình không có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) nên phương trình đã cho không là phương trình đường tròn.

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết