Những câu hỏi liên quan
TL
Xem chi tiết
NL
20 tháng 5 2020 lúc 23:38

a/ \(f'\left(x\right)=12sin^33x.cos3x\)

\(f'\left(x\right)=g\left(x\right)\Leftrightarrow12sin^33x.cos3x=sin6x\)

\(\Leftrightarrow6sin^23x.2sin3x.cos3x-sin6x=0\)

\(\Leftrightarrow6sin^23x.sin6x-sin6x=0\)

\(\Leftrightarrow sin6x\left(6sin^23x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sin6x=0\\sin^23x=\frac{1}{6}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sin6x=0\\\frac{1-cos6x}{2}=\frac{1}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin6x=0\\cos6x=\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}6x=k\pi\\6x=a+k2\pi\\6x=-a+k2\pi\end{matrix}\right.\) với \(cosa=\frac{2}{3}\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{k\pi}{6}\\x=\frac{a}{6}+\frac{k\pi}{3}\\x=-\frac{a}{6}+\frac{k\pi}{3}\end{matrix}\right.\)

Bình luận (0)
NL
20 tháng 5 2020 lúc 23:42

b/

\(f'\left(x\right)=6sin^22x.cos2x=4cos2x-5sin4x\)

\(\Leftrightarrow6sin^22x.cos2x=4cos2x-10sin2x.cos2x\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\\3sin^22x=2-5sin2x\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow3sin^22x+5sin2x-2=0\)

\(\Rightarrow\left[{}\begin{matrix}sin2x=\frac{1}{3}\\sin2x=-2< -1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow sin2x=sina\) (với \(sina=\frac{1}{3}\))

\(\Rightarrow\left[{}\begin{matrix}2x=a+k2\pi\\2x=\pi-a+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{a}{2}+k\pi\\x=\frac{\pi}{2}-\frac{a}{2}+k\pi\end{matrix}\right.\)

Bình luận (0)
NL
20 tháng 5 2020 lúc 23:46

c/

\(f'\left(x\right)=4x.cos^2\frac{x}{2}-2x^2.cos\frac{x}{2}.sin\frac{x}{2}=2x\left(1+cosx\right)-x^2sinx\)

\(f'\left(x\right)=g\left(x\right)\)

\(\Leftrightarrow2x\left(1+cosx\right)-x^2sinx=x-x^2sinx\)

\(\Leftrightarrow2x\left(1+cosx\right)=x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2\left(1+cosx\right)=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow cosx=-\frac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Bình luận (0)
NT
Xem chi tiết
NL
13 tháng 3 2020 lúc 23:54

a/ \(\lim\limits_{x\rightarrow\sqrt{2}}f\left(x\right)=\lim\limits_{x\rightarrow\sqrt{2}}\frac{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}{x-\sqrt{2}}=\lim\limits_{x\rightarrow\sqrt{2}}\left(x+\sqrt{2}\right)=2\sqrt{2}\)

\(\Rightarrow\lim\limits_{x\rightarrow\sqrt{2}}f\left(x\right)=f\left(\sqrt{2}\right)\Rightarrow\) hàm số liên tục tại \(x=\sqrt{2}\)

b/ \(\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^+}\frac{x-5}{\sqrt{2x-1}-3}=\frac{\left(x-5\right)\left(\sqrt{2x-1}+3\right)}{2\left(x-5\right)}=\lim\limits_{x\rightarrow5^+}\frac{\sqrt{2x-1}+3}{2}=3\)

\(f\left(5\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=\lim\limits_{x\rightarrow5^-}\left[\left(x-5\right)^2+3\right]=5\)

\(\Rightarrow\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=f\left(5\right)\Rightarrow\) hàm số liên tục tại \(x=5\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
AH
12 tháng 2 2023 lúc 20:33

Lời giải:
Cái này chỉ tính được giới hạn 1 bên thôi

\(\lim\limits_{x\to 1-}f(x)=\lim\limits_{x\to 1-}\frac{x^2+1}{1-x}=+\infty \) do $\lim\limits_{x\to 1-}(x^2+1)=2>0$ và $1-x>0$ với $x<1$

\(\lim\limits_{x\to 1+}\sqrt{2x-2}=\sqrt{2.1-2}=0\)

Bình luận (0)
TN
Xem chi tiết
JP
Xem chi tiết
HN
17 tháng 11 2023 lúc 4:51

loading...loading...loading...  

Bình luận (0)
HM
Xem chi tiết
NT
4 tháng 8 2022 lúc 13:49

a: Đặt |x-6|=a, |y+1|=b

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

=>|x-6|=1 và |y+1|=1

\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)

b: Đặt |x+y|=a, |x-y|=b

Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)

=>HPTVN

c: Đặt |x+y|=a, |x-y|=b

Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)

=>|x+y|=2 và x=y

=>|2x|=2 và x=y

=>x=y=1 hoặc x=y=-1

Bình luận (0)
H24
Xem chi tiết
NT
19 tháng 11 2023 lúc 20:02

a: \(\lim\limits_{x\rightarrow3^+}f\left(x\right)=\lim\limits_{x\rightarrow3^+}x^2-3=3^2-3=6\)

\(\lim\limits_{x\rightarrow3^-}f\left(x\right)=\lim\limits_{x\rightarrow3^-}x+3=3+3=6\)

b: Vì \(\lim\limits_{x\rightarrow3^+}f\left(x\right)=\lim\limits_{x\rightarrow3^-}f\left(x\right)=6\)

nên hàm số tồn tại lim khi x=3

=>\(\lim\limits_{x\rightarrow3}f\left(x\right)=6\)

Bình luận (0)
NT
Xem chi tiết
NL
13 tháng 3 2020 lúc 23:49

a/ Với \(x\ne\pm1\) hàm số liên tục

Với \(x=-1\) hàm số gián đoạn

Xét tại \(x=1\)

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\frac{x^2+2x-1}{x^2-1}=\frac{2}{0}=+\infty\ne f\left(1\right)\)

Vậy hàm số gián đoạn tại \(x=1\)

b/ Với \(x\ne2\) hàm số liên tục (ko cần xét tại \(x=1\) do tại \(x=1\Rightarrow f\left(x\right)=2x^2-6\) là hàm đa thức nên hiển nhiên liên tục)

Xét tại \(x=2\)

\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\frac{\left(2-x\right)\left(x^2-3x+1\right)}{\left(x-1\right)\left(x-2\right)}=\lim\limits_{x\rightarrow2^+}\frac{x^2-3x+1}{1-x}=1\ne f\left(2\right)\)

Vậy hàm số gián đoạn tại \(x=2\) (ko cần xét thêm giới hạn trái tại 2)

Bình luận (0)
 Khách vãng lai đã xóa
JE
Xem chi tiết
NL
2 tháng 3 2021 lúc 22:03

\(f\left(1\right)=\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\left(x^2+x+1\right)=3\)

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(ax+2\right)=a+2\)

Hàm liên tục tại x=1 khi:

\(a+2=3\Leftrightarrow a=1\)

Bình luận (0)
H24
NT
14 tháng 4 2022 lúc 21:36

Chọn B

Bình luận (1)
BL
14 tháng 4 2022 lúc 21:36

B

Bình luận (1)
AN
14 tháng 4 2022 lúc 21:37

B

Bình luận (1)

Công ty cổ phần BINGGROUP © 2014 - 2025
Liên hệ: Hà Đức Thọ - Hotline: 0986 557 525 - Email: a@olm.vn hoặc hdtho@hoc24.vn