Bài 2: Giới hạn của hàm số

NT

tính lim f(x):

\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2+1}{1-x}\left(x< 1\right)\\\sqrt{2x-2}\left(x\ge1\right)\end{matrix}\right.\)

AH
12 tháng 2 2023 lúc 20:33

Lời giải:
Cái này chỉ tính được giới hạn 1 bên thôi

\(\lim\limits_{x\to 1-}f(x)=\lim\limits_{x\to 1-}\frac{x^2+1}{1-x}=+\infty \) do $\lim\limits_{x\to 1-}(x^2+1)=2>0$ và $1-x>0$ với $x<1$

\(\lim\limits_{x\to 1+}\sqrt{2x-2}=\sqrt{2.1-2}=0\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết