Giải phương trình f'(x) = g(x) với
a) \(\left\{{}\begin{matrix}f\left(x\right)=sin^43x\\g\left(x\right)=sin6x\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}f\left(x\right)=sin^32x\\g\left(x\right)=4cos2x-5sin4x\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}f\left(x\right)=2x^2cos^2\frac{x}{2}\\g\left(x\right)=x-x^2sinx\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}f\left(x\right)=4xcos^2\frac{x}{2}\\g\left(x\right)=8cos\frac{x}{2}-3-2sinx\end{matrix}\right.\)
a/ \(f'\left(x\right)=12sin^33x.cos3x\)
\(f'\left(x\right)=g\left(x\right)\Leftrightarrow12sin^33x.cos3x=sin6x\)
\(\Leftrightarrow6sin^23x.2sin3x.cos3x-sin6x=0\)
\(\Leftrightarrow6sin^23x.sin6x-sin6x=0\)
\(\Leftrightarrow sin6x\left(6sin^23x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sin6x=0\\sin^23x=\frac{1}{6}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sin6x=0\\\frac{1-cos6x}{2}=\frac{1}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin6x=0\\cos6x=\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}6x=k\pi\\6x=a+k2\pi\\6x=-a+k2\pi\end{matrix}\right.\) với \(cosa=\frac{2}{3}\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{k\pi}{6}\\x=\frac{a}{6}+\frac{k\pi}{3}\\x=-\frac{a}{6}+\frac{k\pi}{3}\end{matrix}\right.\)
b/
\(f'\left(x\right)=6sin^22x.cos2x=4cos2x-5sin4x\)
\(\Leftrightarrow6sin^22x.cos2x=4cos2x-10sin2x.cos2x\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\\3sin^22x=2-5sin2x\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow3sin^22x+5sin2x-2=0\)
\(\Rightarrow\left[{}\begin{matrix}sin2x=\frac{1}{3}\\sin2x=-2< -1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow sin2x=sina\) (với \(sina=\frac{1}{3}\))
\(\Rightarrow\left[{}\begin{matrix}2x=a+k2\pi\\2x=\pi-a+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{a}{2}+k\pi\\x=\frac{\pi}{2}-\frac{a}{2}+k\pi\end{matrix}\right.\)
c/
\(f'\left(x\right)=4x.cos^2\frac{x}{2}-2x^2.cos\frac{x}{2}.sin\frac{x}{2}=2x\left(1+cosx\right)-x^2sinx\)
\(f'\left(x\right)=g\left(x\right)\)
\(\Leftrightarrow2x\left(1+cosx\right)-x^2sinx=x-x^2sinx\)
\(\Leftrightarrow2x\left(1+cosx\right)=x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2\left(1+cosx\right)=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow cosx=-\frac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
d/
\(f'\left(x\right)=4cos^2\frac{x}{2}-2x.2cos\frac{x}{2}.sin\frac{x}{2}=2\left(1+cosx\right)-2x.sinx\)
\(f'\left(x\right)=g\left(x\right)\)
\(\Leftrightarrow2+2cosx-2x.sinx=8cos\frac{x}{2}-3-2sinx\)
Chà, có vẻ bạn ghi ko đúng đề, pt này ko giải được.
Chắc \(g\left(x\right)=8cos\frac{x}{2}-3-2x.sinx\) mới đúng chứ nhỉ?