Những câu hỏi liên quan
KL
Xem chi tiết
NM
23 tháng 4 2021 lúc 14:42

a) 3\(\sqrt{3}\)=\(\sqrt{27}\)>\(\sqrt{12}\)

c) \(\frac{1}{3}\)\(\sqrt{51}\)=\(\sqrt{\frac{51}{9}}\)<\(\frac{1}{5}\)\(\sqrt{150}\)=\(\sqrt{\frac{150}{25}}\)=\(\sqrt{6}\)

b) 3\(\sqrt{5}\)=\(\sqrt{45}\)< 7=\(\sqrt{49}\)

d) \(\frac{1}{2}\sqrt{6}\)=\(\sqrt{\frac{6}{4}}\)=\(\sqrt{\frac{3}{2}}\)< 6\(\sqrt{\frac{1}{2}}\)=\(\sqrt{\frac{36}{2}}\)=\(\sqrt{18}\)

Bình luận (0)
 Khách vãng lai đã xóa
PH
28 tháng 5 2021 lúc 15:47

a) Ta có: 33=32.3=9.3=27

Vì 27>12 nên 33>12

Vậy 33>12.
b) Ta có: 35=32.5=45

7=72=49

Vì 49>45 nên 7>35

Vậy 7>35.

 nên 

.

Bình luận (0)
 Khách vãng lai đã xóa
DC
11 tháng 6 2021 lúc 21:07

a) \(3\sqrt{3}=\sqrt{9}.\sqrt{3}=\sqrt{27}>\sqrt{12}\)

b) \(3\sqrt{5}=\sqrt{9}.\sqrt{5}=\sqrt{45}< \sqrt{49}=7\)

c) \(\dfrac{1}{3}\sqrt{51}=\sqrt{\dfrac{1}{9}}.\sqrt{51}=\sqrt{\dfrac{51}{9}}=\sqrt{\dfrac{17}{3}}< \sqrt{6}=\dfrac{1}{5}\sqrt{150}\)

d) \(\dfrac{1}{2}\sqrt{6}=\sqrt{\dfrac{3}{2}}< \sqrt{18}=6\sqrt{\dfrac{1}{2}}\)

Bình luận (0)
 Khách vãng lai đã xóa
SP
Xem chi tiết
SP
Xem chi tiết
SP
Xem chi tiết
H24
3 tháng 7 2019 lúc 15:31

\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(-\sqrt{7}-\sqrt{5}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\frac{\sqrt{5}-\sqrt{7}}{\sqrt{7}+\sqrt{5}}=\frac{\left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}+\sqrt{7}\right)}{\left(\sqrt{7}+\sqrt{5}\right)^2}=\frac{2}{12+2\sqrt{35}}\)

Bình luận (0)
H24
3 tháng 7 2019 lúc 15:42

\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+3\right)}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{8-2\sqrt{15}}{2}+\frac{8+2\sqrt{15}}{2}-\frac{\left(\sqrt{5}+1\right)^2}{4}=8-\frac{6+2\sqrt{5}}{4}=\frac{26-2\sqrt{5}}{4}\)

Bình luận (0)
DN
Xem chi tiết
NT
22 tháng 2 2022 lúc 22:57

a: \(\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\)

\(\left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)

mà \(-2\sqrt{105}>-2\sqrt{120}\)

nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

b: \(\left(\sqrt{2}+\sqrt{8}\right)^2=10+2\cdot4=16=12+4\)

\(\left(3+\sqrt{3}\right)^2=12+6\sqrt{3}\)

mà \(4< 6\sqrt{3}\)

nên \(\sqrt{2}+\sqrt{8}< 3+\sqrt{3}\)

Bình luận (0)
TT
Xem chi tiết
NT
Xem chi tiết
TN
15 tháng 6 2017 lúc 18:37

Bài rút gọn 

\(\sqrt{\left(x-1\right)^2}-x=\left|x-1\right|-x\)

\(=\left(x-1\right)-x=x-1-x=-1\left(x>1\right)\)

Bài gpt:

\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}=0\)

Đk:\(-1\le x\le3\)

\(pt\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}+\sqrt{x-3}\right)=0\)

Dễ thấy:\(\sqrt{x-2}+\sqrt{x-3}=0\) vô nghiệm

Nên \(\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)

Bình luận (0)
WR
Xem chi tiết
TV
18 tháng 8 2016 lúc 17:10

a, = \(\frac{\sqrt{7}-5}{2}-\frac{2\left(3-\sqrt{7}\right)}{4}+\frac{6\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\frac{5\left(4-\sqrt{7}\right)}{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}\)

Bình luận (0)
TV
18 tháng 8 2016 lúc 17:17

a, = \(=\frac{\sqrt{7}-5}{2}-\frac{3-\sqrt{7}}{2}+\frac{6\sqrt{7}+12}{7-4}-\frac{20-5\sqrt{7}}{16-7}=\frac{\sqrt{7}-5-3+\sqrt{7}}{2}+\frac{6\sqrt{7}+12}{3}-\frac{20-5\sqrt{7}}{9}\)

Bình luận (1)
TV
19 tháng 8 2016 lúc 14:15

b. = \(\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}-\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}=\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2}-\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2}\)

Bình luận (0)
NH
Xem chi tiết