Những câu hỏi liên quan
NB
Xem chi tiết
PL
19 tháng 1 2022 lúc 16:28

x^5-3*x^2-(7*x^4-9*x^3+x^2-1/4*x+5*x^4-x^5+x^2-2*x^3+3*x^2-1/4)=0
 

Bình luận (0)
 Khách vãng lai đã xóa
BA
Xem chi tiết
NT
14 tháng 7 2023 lúc 8:36

1: x^2-9x+8=0

=>(x-1)(x-8)=0

=>x=1 hoặc x=8

2: 3x^2-7x+4=0

=>3x^2-3x-4x+4=0

=>(x-1)(3x-4)=0

=>x=4/3 hoặc x=1

3: 2x^2+5x-7=0

=>(2x+7)(x-1)=0

=>x=1 hoặc x=-7/2

4: 3x^2-9x+6=0

=>x^2-3x+2=0

=>x=1 hoặc x=2

5: x^2+2x-3=0

=>(x+3)(x-1)=0

=>x=-3 hoặc x=1

Bình luận (0)
NN
14 tháng 7 2023 lúc 9:08

`@` `\text {Answer}`

`\downarrow`

`1)`

\(x^2 - 9x + 8?\)

\(x^2-9x+8=0\)

`<=>`\(x^2-8x-x+8=0\)

`<=> (x^2 - 8x) - (x - 8) = 0`

`<=> x(x - 8) - (x-8) = 0`

`<=> (x-1)(x-8) = 0`

`<=>`\(\left[{}\begin{matrix}x-1=0\\x-8=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)

Vậy, nghiệm của đa thức là `S = {1; 8}`

`2)`

\(3x^2 - 7x + 4 =0\)

`<=> 3x^2 - 3x - 4x + 4 = 0`

`<=> (3x^2 - 3x) - (4x - 4) = 0`

`<=> 3x(x - 1) - 4(x - 1) = 0`

`<=> (3x - 4)(x-1) = 0`

`<=>`\(\left[{}\begin{matrix}3x-4=0\\x-1=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}3x=4\\x=1\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)

Vậy, nghiệm của đa thức là `S = {4/3; 1}`

`3)`

\(2x^2 + 5x - 7=0\)

`<=> 2x^2 - 2x + 7x - 7 = 0`

`<=> (2x^2 - 2x) + (7x - 7) = 0`

`<=> 2x(x - 1) + 7(x - 1) = 0`

`<=> (2x+7)(x-1) = 0`

`<=>`\(\left[{}\begin{matrix}2x+7=0\\x-1=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}2x=-7\\x=1\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=1\end{matrix}\right.\)

Vậy, nghiệm của đa thức là `S = {-7/2; 1}.`

Bình luận (0)
NN
14 tháng 7 2023 lúc 9:11

`4)`

\(3x^2 - 9x + 6 = 0\)

`<=> 3x^2 - 3x - 6x + 6 = 0`

`<=> (3x^2 - 3x) - (6x - 6) = 0`

`<=> 3x(x - 1) - 6(x - 1) = 0`

`<=> (3x - 6)(x - 1) = 0`

`<=>`\(\left[{}\begin{matrix}3x-6=0\\x-1=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}3x=6\\x=1\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Vậy, nghiệm của đa thức là `S = {1; 2}.`

`5)`

\(x^2 + 2x - 3=0\)

`<=> x^2 + 3x - x - 3 = 0`

`<=> (x^2 - x) + (3x - 3) = 0`

`<=> x(x - 1) + 3(x - 1) = 0`

`<=> (x+3)(x-1) = 0`

`<=>`\(\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)

Vậy, nghiệm của đa thức là `S = {1; -3}.`

Bình luận (0)
H24
Xem chi tiết
NN
3 tháng 9 2023 lúc 9:42

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

Bình luận (0)
NN
3 tháng 9 2023 lúc 9:43

nhầm

 

Bình luận (0)
SN
Xem chi tiết
PT
Xem chi tiết
NT
21 tháng 10 2021 lúc 20:41

\(2x\left(x^2-7x-3\right)=2x^3-14x-6x\)

\(4xy^2\left(-2x^3+y^2-7xy\right)=-8x^4y^2+4xy^5-28x^2y^3\)

Bình luận (1)
NM
Xem chi tiết
JI
15 tháng 2 2020 lúc 10:48

20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)

Vậy...

Bình luận (0)
 Khách vãng lai đã xóa
BV
15 tháng 2 2020 lúc 11:41
https://i.imgur.com/PCDykdb.jpg
Bình luận (0)
 Khách vãng lai đã xóa
JI
15 tháng 2 2020 lúc 10:18

1) 16 - 8x = 0 ⇔ 8(2 - x) = 0⇔ 2 - x = 0 ⇔ x = 2

Vậy phương trình có nghiệm là x = 2

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
EC
15 tháng 7 2021 lúc 13:56

a) \(\left(3x-2\right)\left(3x-1\right)=\left(3x+1\right)^2\)

<=> \(9x^2-9x+2=9x^2+6x+1\)

<=>  \(15x=1\) <=> \(x=\frac{1}{15}\)

b) \(\left(4x-1\right)\left(x+1\right)=\left(2x-3\right)^2\)

<=> \(4x^2+3x-1=4x^2-12x+9\)

<=> \(15x^2=10\) <=> \(x=\frac{2}{3}\)

c) \(\left(5x+1\right)^2=\left(7x-3\right)\left(7x+2\right)\) <=> \(25x^2+10x+1=49x^2-7x-6\)

<=> \(24x^2-17x-7=0\) <=> \(24x^2-24x+7x-7=0\)

<=> \(\left(24x+7\right)\left(x-1\right)=0\) <=> \(\orbr{\begin{cases}x=-\frac{7}{24}\\x=1\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
EC
15 tháng 7 2021 lúc 14:01

d) (4 - 3x)(4 + 3x) = (9x - 3)(1 - x)

<=> 16 - 9x2 = 12x - 9x2 - 3

<=> 12x = 19

<=> x = 19/12

e) x(x + 1)(x + 2)(x + 3) = 24

<=> (x2 + 3x)(x2 + 3x + 2) = 24

<=> (x2 + 3x)2  + 2(x2 + 3x) - 24 = 0

<=> (x2 + 3x)2 + 6(x2 + 3x) - 4(x2 + 3x) - 24 = 0

<=> (x2 + 3x + 6)(x2 + 3x - 4) = 0

<=> \(\orbr{\begin{cases}x^2+3x+6=0\\x^2+3x-4=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{15}{4}=0\left(vn\right)\\\left(x+4\right)\left(x-1\right)=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)

g) (7x - 2)2 = (7x - 3)(7x + 2)

<=> 49x2 - 28x + 4 = 49x2 - 7x - 6

<=> 21x = 10 <=> x = 10/21

Bình luận (0)
 Khách vãng lai đã xóa
BB
Xem chi tiết
DD
13 tháng 2 2022 lúc 12:32

undefined

Bình luận (1)
NT
13 tháng 2 2022 lúc 12:28

1.

a.\(\Leftrightarrow7x-5x=3+12\)

\(\Leftrightarrow2x=15\Leftrightarrow x=\dfrac{15}{2}\)

b.\(\Leftrightarrow6x-10-7x-7=2\)

\(\Leftrightarrow x=-19\)

c.\(\Leftrightarrow1-3x=4x-3\)

\(\Leftrightarrow7x=2\Leftrightarrow x=\dfrac{2}{7}\)

d.\(\Leftrightarrow8x^2-4x+12x-6-8x^2-8x-2=12\)

\(\Leftrightarrow-2=12\left(voli\right)\)

Bình luận (3)
NH
Xem chi tiết