Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PB
Xem chi tiết
CT
26 tháng 7 2018 lúc 15:19

Ta có với mọi số nguyên m thì m2 chia cho 5 dư 0 , 1 hoặc 4.

+ Nếu n2 chia cho 5 dư 1 thì   n 2 = 5 k + 1 = > n 2 + 4 = 5 k + 5 ⋮ 5 ; k ∈ N * .

Nên n2+4 không là số nguyên tố

+ Nếu n2 chia cho 5 dư 4 thì  n 2 = 5 k + 4 = > n 2 + 16 = 5 k + 20 ⋮ 5 ; k ∈ N * .

Nên n2+16 không là số nguyên tố.

Vậy n2  5 hay n  ⋮ 5

Bình luận (0)
ND
Xem chi tiết
NL
20 tháng 6 2021 lúc 22:53

\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)

\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)

\(=5n^2+5n+10\)

\(=5\left(n^2+n+2\right)⋮5\) (đpcm)

Bình luận (0)
CP
Xem chi tiết
NM
9 tháng 11 2021 lúc 16:01

\(a,A=\dfrac{\left(119+1\right)\left(119-1+1\right)}{2}=\dfrac{120\cdot119}{2}=60\cdot\dfrac{119}{2}⋮5\\ b,n^2+n+1=n\left(n+1\right)+1\)

Vì \(n\left(n+1\right)\) là tích 2 số tự nhiên lt nên \(n\left(n+1\right)\) chẵn

Do đó \(n\left(n+1\right)+1\) lẻ

Vậy \(n^2+n+1⋮̸4\)

Bình luận (1)
UN
9 tháng 11 2021 lúc 16:01

a) chịu

b) n2 + n + 1= n3 + 1(ơ, n=1 đc mà)

Bình luận (0)
DN
Xem chi tiết
NT
4 tháng 10 2021 lúc 9:34

Bài 2: 

\(n^3-n^2+2n+7⋮n^2+1\)

\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)

\(\Leftrightarrow n^2-64⋮n^2+1\)

\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)

\(\Leftrightarrow n\in\left\{0;8;-8\right\}\)

Bình luận (0)
TN
Xem chi tiết
NT
29 tháng 10 2023 lúc 14:59

a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)

\(=3\left(2n+3\right)⋮3\)

b: Đặt A=\(\left(n-5\right)^2-n^2\)

\(A=\left(n-5\right)^2-n^2\)

\(=n^2-10n+25-n^2\)

\(=-10n+25=5\left(-2n+5\right)⋮5\)

\(A=\left(n-5\right)^2-n^2\)

\(=-10n+25\)

\(-10n⋮2;25⋮̸2\)

=>-10n+25 không chia hết cho 2

=>A không chia hết cho 2

Bình luận (0)
KL
29 tháng 10 2023 lúc 15:07

(n + 3)² - n² = n² + 6n + 9 - n²

= 6n + 9

= 3(3n + 3) ⋮ 3

Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ

--------

(n - 5)² - n² = n² - 10n + 25 - n²

= -10n + 25

= -5(2n - 5) ⋮ 5

Do -10n ⋮ 2

25 không chia hết cho 2

⇒ -10n + 25 không chia hết cho 2

Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ

Bình luận (0)
NN
Xem chi tiết
PB
Xem chi tiết
CT
18 tháng 2 2019 lúc 18:05

Bình luận (0)
Xem chi tiết
JN
31 tháng 1 2021 lúc 22:26

n 2+n+1 = n(n + 1) +1.

Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là 0, 2, 6

Do đó n(n+1) + 1 có chữ số tận cùng là 1, 3, 7.

Vì 1, 3, 7 không chia hết cho 2 và 5 nên n(n+1) + 1 không chia hết cho 2 và 5

Vậy n 2+n+1 không chia hết cho 2 và 5

Bình luận (0)
H24
31 tháng 1 2021 lúc 22:28

a) n2+n+1=n(n+1)+1

Ta có n(n+1)⋮2vì n(n+1)n(n+1)là tích 2 số TN liên tiếp . Do đó n(n+1)+1không chia hết cho 2

n2+n+1=n(n+1)+1

Ta có n(n+1)l là tích của 2 số TN liên tiếp nên tận cùng bằng 0,2,6 . Suy ra n(n+1)tận cùng bằng 1,3,7 không chia hết cho 5

Bình luận (0)
H24
1 tháng 2 2021 lúc 8:46

tham khao

https://olm.vn/hoi-dap/detail/93364253.html

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 6 2017 lúc 2:52

Bình luận (0)
NS
16 tháng 1 2021 lúc 9:44

Có n không chia hết cho 3

=> n^2 không chia hết cho 3 (1)

Vì n^2 là số chính phương

=> n^2 chia cho 3 dư 1 hoặc 0 (2)

Từ (1) và (2) => n^2 chia 3 dư 1

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
18 tháng 5 2019 lúc 4:53

Vì n không chia hết cho 3 nên n có thể được viết dưới dạng n = 3k+1 hoặc n = 3k+2 (k ∈ N*)

Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) = 3k(3k+1)+3k+1. Suy ra  n 2  chia cho 3 dư 1.

Nếu n = 3k+2 thì   n 2  = (3k+2)(3k+2) = 3k(3k+2)+6k+4.Suy ra  n 2  chia cho 3 dư 1.

=>  ĐPCM

Bình luận (0)