Violympic toán 6

Chứng minh rằng: A=n2+n+1 ko chia hết cho 2 và 5,∀ n∈N

JN
31 tháng 1 2021 lúc 22:26

n 2+n+1 = n(n + 1) +1.

Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là 0, 2, 6

Do đó n(n+1) + 1 có chữ số tận cùng là 1, 3, 7.

Vì 1, 3, 7 không chia hết cho 2 và 5 nên n(n+1) + 1 không chia hết cho 2 và 5

Vậy n 2+n+1 không chia hết cho 2 và 5

Bình luận (0)
H24
31 tháng 1 2021 lúc 22:28

a) n2+n+1=n(n+1)+1

Ta có n(n+1)⋮2vì n(n+1)n(n+1)là tích 2 số TN liên tiếp . Do đó n(n+1)+1không chia hết cho 2

n2+n+1=n(n+1)+1

Ta có n(n+1)l là tích của 2 số TN liên tiếp nên tận cùng bằng 0,2,6 . Suy ra n(n+1)tận cùng bằng 1,3,7 không chia hết cho 5

Bình luận (0)
H24
1 tháng 2 2021 lúc 8:46

tham khao

https://olm.vn/hoi-dap/detail/93364253.html

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
DA
Xem chi tiết
DN
Xem chi tiết
DX
Xem chi tiết
GM
Xem chi tiết
LM
Xem chi tiết
DH
Xem chi tiết
LT
Xem chi tiết
NK
Xem chi tiết