\(\frac{\sqrt{75a^3}}{\sqrt{3a}}\)(với a>0)
Thực hiện phép tính
a)\(\sqrt{\frac{75a^3}{\sqrt{3a}}}\) (với a>0)
Rút gọn biểu thức:
\(2\sqrt{3a}-\sqrt{75a}+a\sqrt{\frac{6}{5}.\frac{5}{2a}}-\frac{2}{5}\sqrt{300a^3}\left(a>0\right)\)
\(2\sqrt{3a}-\sqrt{75a}+a\sqrt{\frac{6}{5}.\frac{5}{2a}}-\frac{2}{5}\sqrt{300a^3}\)
\(=2\sqrt{3a}-5\sqrt{3a}+a\sqrt{\frac{3}{2}}-\frac{2}{5}.10.a\sqrt{3a}\)
\(=-3\sqrt{3a}+\sqrt{\frac{3}{a}.a^2-4\sqrt{3a}}\)
\(=-3\sqrt{3a}+\sqrt{3a}-4a\sqrt{3a}\)
\(=-2\sqrt{3a}-4a\sqrt{3a}\)
\(=-2\sqrt{3a}\left(1+2a\right)\)
Rút gọn biểu thức chứa căn bậc hai: ai xem hộ em bài dưới em làm có đùng không ạ
\(2\sqrt{3}-\sqrt{75a}+a\sqrt{\frac{13,5}{2a}}-\frac{2}{5}\sqrt{300a^3}=2\sqrt{3a}-5\sqrt{3a}+\frac{a}{2a}\sqrt{27a}-\frac{2}{5}.10a\sqrt{3a}=2\sqrt{3a}-5\sqrt{3a}+\frac{3}{a}\sqrt{3a}-4a\sqrt{3a}=\frac{-11}{2}\sqrt{3}\)
rút gọn biểu thức
B = \(2\sqrt{3a}-\sqrt{75a}+a\sqrt{\dfrac{13,5}{2a}}-\sqrt{300a^2}\left(a>0\right)\)
\(=2\sqrt{3a}-5\sqrt{3a}+\dfrac{3}{2}\sqrt{3a}-10\sqrt{3a}\)
\(=-\dfrac{23}{2}\sqrt{3a}\)
Rút gọn các biểu thức:
a) (2-\(\sqrt{2}\))(-5\(\sqrt{2}\)) - (3\(\sqrt{2}\) - 5)\(^2\)
b) 2\(\sqrt{3a}\) - \(\sqrt{75a}\) + a\(\sqrt{\frac{13,5}{2a}}\) - \(\frac{2}{5}\)\(\sqrt{300a^3}\) với a>0
a: \(=-10\sqrt{2}+10-\left(18-2\cdot3\sqrt{2}\cdot5+25\right)\)
\(=-10\sqrt{2}+19-43+30\sqrt{2}\)
\(=-24+20\sqrt{2}\)
b: \(=2\sqrt{3a}-5\sqrt{3a}+a\cdot\sqrt{\dfrac{27}{4a}}-\dfrac{2}{5}\cdot10a\sqrt{3a}\)
\(=-3\sqrt{3a}-4a\sqrt{3a}+\sqrt{\dfrac{27a}{4}}\)
\(=-3\sqrt{3a}-4a\sqrt{3a}+\dfrac{3}{2}\sqrt{3a}\)
\(=\sqrt{3a}\left(-\dfrac{3}{2}-4a\right)\)
Rút gọn các biểu thức :
a) \(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)
b) \(2\sqrt{3a}-\sqrt{75a}+a\sqrt{13,\dfrac{5}{2a}}-\dfrac{2}{5}\sqrt{300a^3}\) với \(a>0\)
a) \(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)
\(=-10\sqrt{2}+5.2-\left(18-30\sqrt{2}+25\right)\)
\(=-10\sqrt{2}+10-18+30\sqrt{2}-25\)
\(=20\sqrt{2}-33\)
b) câu b đề sai
câu a, \(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2=-10\sqrt{2}+5.2-\left(8-30\sqrt{2}+25\right)\)
= \(-33+20\sqrt{2}\)
rút gọn
\(2\sqrt[]{3a}-\sqrt{75a}+a\sqrt{\dfrac{13,5}{2a}}-\dfrac{2}{5}\sqrt{300a^2}\)
\(2\sqrt{3a}-\sqrt{75a}+a\sqrt{\dfrac{13,5}{2a}}-\dfrac{2}{5}\sqrt{300a^2}\)
\(=2\sqrt{3a}-5\sqrt{3a}+a\sqrt{\dfrac{27a}{\left(2a\right)^2}}-\dfrac{2}{5}\sqrt{100a^2.300}\\ =2\sqrt{a}-5\sqrt{3a}+\dfrac{a.3}{2a}\sqrt{3a}-\dfrac{2}{5}\left|10a\right|\sqrt{3a}\\ =2\sqrt{3a}-5\sqrt{3a}+1,5\sqrt{3a}-4a\sqrt{3a}\\ =-1,5\sqrt{3a}-4a\sqrt{3a}\)
Chứng minh rằng với mọi a,b>0, a khác b:
\(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}+\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)
1) \(\sqrt{9a^2.b^2}\) với a<0, b<0
2) \(\sqrt{3a}.\sqrt{27a}\) với a \(\ge\)0
3) \(\sqrt{3a^5}.12a\) với a>0
4) \(\sqrt{5a}.\sqrt{45a}-3a\) ( với a ≥ 0)
5) \(\sqrt{3+\sqrt{a}}\).\(\sqrt{3-\sqrt{a}}\)
6) \(\sqrt{3+\sqrt{5}}\). \(\sqrt{3\sqrt{5}}\)
\(1) \sqrt{9a^2.b^2}\)=3ab
\(2) \sqrt{3a}.\sqrt{27a}=\sqrt{3a}.3\sqrt{3a}=9a\)
\(3) \sqrt{3a^5}.12a=12\sqrt{3a^7}\)
\(4) \sqrt{5a}.\sqrt{45a}-3a=15a-3a=12a\)
\(5) \sqrt{3+\sqrt{a}}.\sqrt{3-\sqrt{a}}=\sqrt{(3+\sqrt{a}).(3-\sqrt{a})} =\sqrt{9-a} \)
\(6) \sqrt{3+\sqrt{5}}.\sqrt{3\sqrt{5}} =\sqrt{\sqrt{3\sqrt{5}}.(3+\sqrt{5})} =\sqrt{9+\sqrt{15}}\)
1) \(\sqrt{9a^2b^2}=3ab\)
2) \(\sqrt{3a}\cdot\sqrt{27a}=9a\)
4) \(\sqrt{5a}\cdot\sqrt{45a}-3a=15a-3a=12a\)