Những câu hỏi liên quan
PT
Xem chi tiết
NT
15 tháng 7 2023 lúc 23:32

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)

Bình luận (0)
TA
Xem chi tiết
LP
8 tháng 10 2023 lúc 9:47

a) đkxđ \(x\ge1\)

pt đã cho \(\Leftrightarrow\left(\sqrt{2x-1}-3\right)+\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\dfrac{2x-10}{\sqrt{2x-1}+3}+\dfrac{x-5}{\sqrt{x-1}+2}=0\)

\(\Leftrightarrow\left(x-5\right)\left(\dfrac{2}{\sqrt{2x-1}+3}+\dfrac{1}{\sqrt{x-1}+2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\left(nhận\right)\\\dfrac{2}{\sqrt{2x-1}+3}+\dfrac{1}{\sqrt{x-1}+3}=0\end{matrix}\right.\)

 Hiển nhiên pt thứ 2 vô nghiệm vì \(VT>0\) với mọi \(x\ge1\). Do đó pt đã cho có nghiệm duy nhất là \(x=5\)

b) đkxđ: \(x\ge-3\)

 Để ý rằng \(x^2+2x+7=\left(x^2+1\right)+\left(2x+6\right)=\left(x^2+1\right)+2\left(x+3\right)\) nên nếu ta đặt \(\sqrt{x^2+1}=u\left(u\ge1\right)\) và \(\sqrt{x+3}=v\left(v\ge0\right)\) thì pt đã chot rở thành:

 \(u^2+2v^2=3uv\)

 \(\Leftrightarrow\left(u-v\right)\left(u-2v\right)=0\)

 \(\Leftrightarrow\left[{}\begin{matrix}u=v\\u=2v\end{matrix}\right.\)

Nếu \(u=v\) thì \(\sqrt{x^2+1}=\sqrt{x+3}\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x^2+1=x+3\end{matrix}\right.\) 

Mà \(x^2+1=x+3\)  \(\Leftrightarrow x^2-x-2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\) (nhận)

 Nếu \(u=2v\) thì \(\sqrt{x^2+1}=2\sqrt{x+3}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x^2+1=4x+12\end{matrix}\right.\)

mà \(x^2+1=4x+12\)\(\Leftrightarrow x^2-4x-11=0\)

\(\Leftrightarrow x=2\pm\sqrt{15}\) (nhận)

Vậy pt đã cho có tập nghiệm \(S=\left\{2;-1;2\pm\sqrt{15}\right\}\)

 

Bình luận (0)
H9
8 tháng 10 2023 lúc 7:55

a) \(\sqrt{2x-1}+\sqrt{x-1}=5\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\left(\sqrt{2x-1}+\sqrt{x-1}\right)^2=5^2\)

\(\Leftrightarrow2x-1+x-1+2\sqrt{\left(2x-1\right)\left(x-1\right)}=25\)

\(\Leftrightarrow3x-2+2\sqrt{\left(2x-1\right)\left(x-1\right)}=25\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)\left(x-1\right)}=\dfrac{27-3x}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{27-3x}{2}\ge0\\\left(2x-1\right)\left(x-1\right)=\left(\dfrac{27-3x}{2}\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}27-3x\ge0\\2x^2-2x-x+1=\dfrac{729-162x+9x^2}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x\le27\\8x^2-12x+4=9x^2-162x+729\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\x^2-150x+725=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\\left[{}\begin{matrix}x-5=0\\x-145=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\\left[{}\begin{matrix}x=5\left(tm\right)\\x=145\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow x=5\)

Bình luận (0)
MN
Xem chi tiết
EC
13 tháng 8 2021 lúc 21:07

ĐK:\(x\ge\dfrac{5}{2}\)

Ta có:\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)

    \(\Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=7.2\)

    \(\Leftrightarrow\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+6}=14\)

    \(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)

    \(\Leftrightarrow\sqrt{2x-5}+1+\sqrt{2x-5}+3=14\)

    \(\Leftrightarrow2\sqrt{2x-5}=10\)

    \(\Leftrightarrow\sqrt{2x-5}=5\)

    \(\Leftrightarrow2x-5=25\Leftrightarrow2x=30\Leftrightarrow x=15\left(tm\right)\)

Bình luận (0)
NL
13 tháng 8 2021 lúc 21:10

ĐKXĐ: \(x\ge\dfrac{5}{2}\)

\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14\)

\(\Leftrightarrow\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+3}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)

\(\Leftrightarrow2.\sqrt{2x-5}+4=14\)

\(\Leftrightarrow\sqrt{2x-5}=5\)

\(\Leftrightarrow x=15\)

Bình luận (0)
NT
Xem chi tiết
TN
14 tháng 7 2017 lúc 20:32

Giải mẫu chi tiết cho bài này nhé 

Đk:\(x\ge\frac{5}{2}\)

\(pt\Leftrightarrow\sqrt{\left(2x\right)^2-2\cdot2\cdot5x+5^2}=5-2x\)

\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}=5-2x\)

\(\Leftrightarrow\left|2x-5\right|=5-2x\)

*)Xét \(x\ge\frac{5}{2}\Rightarrow\left|2x-5\right|\ge0\Rightarrow\left|2x-5\right|=2x-5\)

thì \(\Leftrightarrow2x-5=5-2x\Leftrightarrow x=\frac{5}{2}\)  (thỏa)

*)Xét \(x< \frac{5}{2}\Rightarrow\left|2x-5\right|< 0\Rightarrow\left|2x-5\right|=-\left(2x-5\right)=-2x+5\)

thì \(\Leftrightarrow-2x+5=5-2x\Leftrightarrow0=0\) vậy luôn đúng

Bình luận (0)
LD
21 tháng 9 2020 lúc 20:42

\(\sqrt{4x^2-20x+25}+2x=5\)

\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}=5-2x\)

\(\Leftrightarrow\left|2x-5\right|=5-2x\)(*)

+) Với x < 5/2

(*) <=> -( 2x - 5 ) = 5 - 2x

     <=> 5 - 2x = 5 - 2x ( đúng ∀ x < 5/2 ) (1)

+) Với x ≥ 5/2

(*) <=> 2x - 5 = 5 - 2x

     <=> 2x + 2x = 5 + 5

     <=> 4x = 10

     <=> x = 10/4 = 5/2 ( tm ) (2)

Từ (1) và (2) => Nghiệm của phương trình là x ≤ 5/2

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
11 tháng 6 2019 lúc 20:45

#)Thắc mắc ?

Bạn ơi ! chỗ kia là \(\sqrt{x}-7hay\sqrt{x+7}\)thế ???????????????

Bình luận (0)
H24
11 tháng 6 2019 lúc 21:06

#)Giải :

\(5\sqrt{x-1}-\sqrt{x-7}=3x-4\)

ĐKXĐ : \(x\ge1\)

Đặt \(\hept{\begin{cases}\sqrt{x-1}=a\ge0\\\sqrt{x+7=b>0}\end{cases}\Rightarrow3x-4}=\frac{25a^2-b^2}{8}\)

Phương trình trở thành : 

\(5a-b=\frac{25a^2-b^2}{8}\Leftrightarrow\left(5a-b\right)\left(5a+b\right)=8\left(5a-b\right)\)

 \(\Leftrightarrow\orbr{\begin{cases}5a-b=0\\5a+b=8\end{cases}\Leftrightarrow\orbr{\begin{cases}5\sqrt{x-1}=\sqrt{x+7}\\5\sqrt{x-1}+\sqrt{x+7}=8\end{cases}}}\)

\(TH1:5\sqrt{x+1}=\sqrt{x+7}\Leftrightarrow25\left(x-1\right)=x+7\Rightarrow x=\frac{4}{3}\)

\(TH2:5\sqrt{x-1}+\sqrt{x+7}=8\)

\(\Leftrightarrow5\sqrt{x-1}-5+\sqrt{x+7}-3=0\)

\(\Leftrightarrow\frac{5\left(x-2\right)}{\sqrt{x-1}+1}+\frac{x-2}{\sqrt{x-7}+3}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{5}{\sqrt{x-1}+1}+\frac{1}{\sqrt{x-7}+3}\right)=0\)

\(\Rightarrow x=2\)

Bình luận (0)
YN
11 tháng 6 2019 lúc 21:11

đề sai rồi bn ah

bn lên : https://coccoc.com/search/math

5.căn.(x-1) - can (x-7) = 3x-4           bấm y như vậy vào xem

Chúc bạn hk tốt

Bình luận (0)
TA
Xem chi tiết
NM
20 tháng 7 2023 lúc 8:32

ĐK

\(\left\{{}\begin{matrix}x+3\ge0\\7-x\ge0\\2x-8\ge0\end{matrix}\right.\)

Giải hệ bất PT trên được ĐK tổng hợp là \(4\le x\le7\)

Bình phương 2 vế PT

\(x+3+7-x-2\sqrt{\left(x+3\right)\left(7-x\right)}=2x-8\)

\(\Leftrightarrow2\sqrt{\left(x+3\right)\left(7-x\right)}=18-2x\)

BP 3 vế PT

\(4\left(x+3\right)\left(7-x\right)=324+4x^2-72x\)

\(\Leftrightarrow28x-4x^2+84-12x=324+4x^2-72x\)

\(\Leftrightarrow8x^2-88x+240=0\Leftrightarrow x^2-11x+30=0\)

Giải PT bậc 2 rồi đối chiếu với đk, bạn tự làm nốt nhé

 

Bình luận (0)
KC
Xem chi tiết
NN
Xem chi tiết
NT
25 tháng 11 2023 lúc 10:52

ĐKXĐ: \(x\in R\)

\(3x^2-5x+6=2x\cdot\sqrt{x^2-x+2}\)

=>\(3x^2-6x+x-2+8=2\cdot\sqrt{x^4-x^3+2x^2}\)

=>\(\left(x-2\right)\left(3x+1\right)=2\cdot\left(\sqrt{x^4-x^3+2x^2}-4\right)\)

\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=2\cdot\dfrac{x^4-x^3+2x^2-16}{\sqrt{x^4-x^3+2x^2}+4}\)

=>\(\left(x-2\right)\left(3x+1\right)=2\cdot\dfrac{x^4-2x^3+x^3-2x^2+4x^2-8x+8x-16}{\sqrt{x^4-x^3+2x^2}+4}\)

=>\(\left(x-2\right)\left(3x+1\right)=\dfrac{2\left(x-2\right)\left(x^3+x^2+4x+8\right)}{\sqrt{x^4-x^3+2x^2}+4}\)

=>\(\left(x-2\right)\left[\left(3x+1\right)-\dfrac{2\left(x^3+x^2+4x+8\right)}{\sqrt{x^4-x^3+2x^2}+4}\right]=0\)

=>x-2=0

=>x=2(nhận)

Bình luận (2)
TH
25 tháng 11 2023 lúc 11:42

\(3x^2-5x+6=2x\sqrt{x^2-x+2}\)

\(\Leftrightarrow\left[x^2-2x\sqrt{x^2-x+2}+\left(x^2-x+2\right)\right]+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x^2-x+2}\right)^2+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{x^2-x+2}\\x-2=0\end{matrix}\right.\Leftrightarrow x=2\)

Thử lại ta thấy nghiệm \(x=2\) thỏa phương trình ban đầu.

Bình luận (0)
NC
Xem chi tiết