Những câu hỏi liên quan
CM
Xem chi tiết
AH
16 tháng 4 2021 lúc 23:44

Lời giải:

ĐKXĐ: $4-6x-x^2\geq 0$

PT \(\Leftrightarrow \left\{\begin{matrix} x+4\geq 0\\ 4-6x-x^2=(x+4)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -4\\ x^2+7x+6=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq -4\\ (x+1)(x+6)=0\end{matrix}\right.\Rightarrow x=-1\)

Thử lại với ĐKXĐ thì thỏa mãn

Nên pt có 1 nghiệm duy nhất.

Bình luận (0)
DT
Xem chi tiết
NM
21 tháng 10 2021 lúc 8:02

\(\sqrt{4x-8}-2\sqrt{\dfrac{x-2}{4}}=3\left(x\ge2\right)\\ \Leftrightarrow2\sqrt{x-2}-\sqrt{x-2}=3\\ \Leftrightarrow\sqrt{x-2}=3\Leftrightarrow x-2=9\\ \Leftrightarrow x=11\left(tm\right)\)

Bình luận (0)
LL
21 tháng 10 2021 lúc 8:02

ĐKXĐ: \(x\ge2\)

\(pt\Leftrightarrow2\sqrt{x-2}-\sqrt{x-2}=3\)

\(\Leftrightarrow\sqrt{x-2}=3\Leftrightarrow x-2=9\Leftrightarrow x=11\left(tm\right)\)

Bình luận (0)
LL
21 tháng 10 2021 lúc 8:00

ĐKXĐ: \(3\ge x\ge5\)(vô lý)

Vậy pt vô nghiệm

Bình luận (0)
TN
Xem chi tiết
NL
20 tháng 12 2020 lúc 23:40

ĐKXĐ: \(x\ge0\)

- Với \(x=0\) ko phải là nghiệm

- Với \(x>0\) chia 2 vế cho \(x\) ta được:

\(\dfrac{x^2+4}{x}+2-m=4\sqrt{\dfrac{x^2+4}{x}}\)

Đặt \(\sqrt{\dfrac{x^2+4}{x}}=t\ge2\)

\(\Rightarrow t^2-4t+2=m\)

Xét hàm \(f\left(t\right)=t^2-4t+2\) với \(t\ge2\)

\(\Rightarrow f\left(t\right)\ge f\left(2\right)=-2\Rightarrow m\ge-2\)

Có \(2018-\left(-2\right)+1=2021\) giá trị nguyên của m

Bình luận (0)
JV
Xem chi tiết
NL
8 tháng 4 2021 lúc 2:23

ĐKXĐ: ...

\(\Leftrightarrow m^2+m\left(x^2-3x-4\right)-m\sqrt{x+7}-\left(x^2-3x-4\right)\sqrt{x+7}=0\)

\(\Leftrightarrow m\left(x^2-3x-4+m\right)-\sqrt{x+7}\left(x^2-3x-4+m\right)=0\)

\(\Leftrightarrow\left(m-\sqrt{x+7}\right)\left(x^2-3x-4+m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{x+7}\left(1\right)\\m=-x^2+3x+4\left(2\right)\end{matrix}\right.\)

Với \(m\) nguyên tố \(\Rightarrow\) (1) luôn có đúng 1 nghiệm

Để pt có số nghiệm nhiều nhất \(\Rightarrow\) (2) có 2 nghiệm pb

\(\Rightarrow y=m\) cắt \(y=-x^2+3x+4\) tại 2 điểm pb thỏa mãn \(x\ge-7\)

\(\Rightarrow-66\le m\le\dfrac{25}{4}\Rightarrow m=\left\{2;3;5\right\}\)

Bình luận (0)
NC
Xem chi tiết
HP
20 tháng 12 2020 lúc 22:41

ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{x+2}+\sqrt{2-x}=t\left(2\le t\le2\sqrt{2}\right)\)

Phương trình đã cho trở thành:

\(t+t^2-4+2m+3=0\)

\(\Leftrightarrow2m=f\left(t\right)=-t^2-t+1\)

Phương trình đã cho có nghiệm khi \(minf\left(t\right)\le2m\le maxf\left(t\right)\)

\(\Leftrightarrow-7-2\sqrt{2}\le2m\le-5\)

\(\Leftrightarrow\dfrac{-7-2\sqrt{2}}{2}\le m\le-\dfrac{5}{2}\)

Bình luận (0)
PP
Xem chi tiết
H24
Xem chi tiết
H24
11 tháng 3 2021 lúc 21:38

undefined

Bình luận (0)
H24
11 tháng 3 2021 lúc 21:39

undefined

Bình luận (0)
HT
Xem chi tiết
EC
1 tháng 10 2021 lúc 20:12

ĐK: \(x\ge1\)

Ta có: \(\sqrt{x^2+6x+9}=x-1\)

      \(\Leftrightarrow x^2+6x+9=x^2-2x+1\)

      \(\Leftrightarrow8x=-8\Leftrightarrow x=-1\left(loại\right)\)

 ⇒ ptvn

Điền vào dấu 3 chấm là số 0 nhé

Bình luận (0)
HP
1 tháng 10 2021 lúc 20:12

\(\sqrt{x^2+6x+9}=x-1\)

<=> \(\sqrt{\left(x+3\right)^2}=x-1\)

<=> \(\left|x+3\right|=x-1\)

<=> \(\left[{}\begin{matrix}x+3=x-1\left(x\ge-3\right)\\x+3=-x+1\left(x< -3\right)\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x-x=-1+3\\x+x=1-3\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}0=2\left(VLí\right)\\2x=-2\end{matrix}\right.\)

<=> 2x = -2

<=> x = -1

Vậy nghiệm của phương trình là \(S=\left\{-1\right\}\)

Bình luận (1)
MD
Xem chi tiết
NT
23 tháng 2 2023 lúc 13:10

Câu 8 A

Câu 7 C

Câu 6D

5D

4D

2C

1A

Bình luận (1)