Ôn tập chương IV

JV

Cho phương trình \(m^2+m\left(x^2-3x-4-\sqrt{x+7}\right)-\left(x^2-3x-4\right)\sqrt{x+7}=0\) ,với  m  là tham số.

Có tất cả bao nhiêu số nguyên tố  m  để phương trình có số nghiệm thực nhiều nhất ?

NL
8 tháng 4 2021 lúc 2:23

ĐKXĐ: ...

\(\Leftrightarrow m^2+m\left(x^2-3x-4\right)-m\sqrt{x+7}-\left(x^2-3x-4\right)\sqrt{x+7}=0\)

\(\Leftrightarrow m\left(x^2-3x-4+m\right)-\sqrt{x+7}\left(x^2-3x-4+m\right)=0\)

\(\Leftrightarrow\left(m-\sqrt{x+7}\right)\left(x^2-3x-4+m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{x+7}\left(1\right)\\m=-x^2+3x+4\left(2\right)\end{matrix}\right.\)

Với \(m\) nguyên tố \(\Rightarrow\) (1) luôn có đúng 1 nghiệm

Để pt có số nghiệm nhiều nhất \(\Rightarrow\) (2) có 2 nghiệm pb

\(\Rightarrow y=m\) cắt \(y=-x^2+3x+4\) tại 2 điểm pb thỏa mãn \(x\ge-7\)

\(\Rightarrow-66\le m\le\dfrac{25}{4}\Rightarrow m=\left\{2;3;5\right\}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
BK
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LY
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
SA
Xem chi tiết