Tìm x
a, 48- 2 ( 2x - 1 )3 = 102
b, ( 1/3 )x = 1/81
1+2+3+....+999=?
x^2.x^4.x^6.x^8....x^48...x^50=?
tìm X
5^x=125
3^2x=81
1+2+3+....+999
=\(\frac{999.\left(999+1\right)}{2}\)
=999000/2
=499500
x^2.x^4.x^6.x^8....x^48...x^50
=x(2+4+6+8+...+48+50)
=x650
tìm X
5^x=125
5^x=5^3
x=3
3^2x=81
3^2x=3^4
2x=4
x=4:2
x=2
**** nhé
B3:Tìm x
a (x-12)+48=96
b56-(17+x)=24
c 5x+57=112
d 87-2x=65
e (x-46):32=2
g 120-3(x+1)=102
a (x-12)+48=96
x-12=96-48=48
x=12+48=60
b56-(17+x)=24
17+x=56-24
17+x=32
x=31-17=15
c 5x+57=112
5x=112-57=55
x=11
d 87-2x=65
2x=87-65=22
x=11
e (x-46):32=2
x-46=64
x=110
g 120-3(x+1)=102
3(x+1)=120-102=18
x+1=6
x=5
a: Ta có: \(\left(x-12\right)+48=96\)
\(\Leftrightarrow x-12=48\)
hay x=60
b: ta có: \(56-\left(x+17\right)=24\)
\(\Leftrightarrow x+17=32\)
hay x=15
c: Ta có: \(5x+57=112\)
\(\Leftrightarrow5x=55\)
hay x=11
d: Ta có: 87-2x=65
\(\Leftrightarrow2x=22\)
hay x=11
B1:Tính nhanh:
a)M= -1/3 . 141/17 - 39/3 . -1/17
b)N= -9/16 . 13/3 - (-3/4)^2 . 19/3
c)P=(1+1/1.3) (1+1/2.4) (1+1/3.5)......(1+1/99.101)
B2:Tìm x,biết
a)1/2+3/2:x=1/4
b)3/4+1/4.x=7
c)1/2.4 + 1/4.6 +.........+1/(2x-2).2x = 11/48
B3:Tìm x,biết
a)(x-1/2)^2=1/81
b)x+x(1+1/x)+x(1+2/x)=1/3
c)2/x+4=3/x+5
Tìm x:
a) 2/3 + 1/3 : x= 3/5
b) ( 2x/3 - 3 ) : (-10) = 2/5
c) | 2x + 1 | = 4
d) | 2x - 1 | +1 = 4
e ) 8 - | 1 - 3x | = 1/81
f) 1,5 x - 7/3 * x = 1,5 - 2/3
g) (1/2)^2x-1 = 1/8
h) ( -1/3 )^x-3 = 1/81
tìm x
a, (2x - 3)\(^2\) = |3 - 2x|
b, (x - 1)\(^2\) + (2x - 1)\(^2\) - 0
c, x - 2\(\sqrt{x}\) = 0
d, (x - 1)\(^2\) + 1/7 = 0
a: \(\left(2x-3\right)^2=\left|3-2x\right|\)
=>\(\left\{{}\begin{matrix}\left|2x-3\right|>=0\\\left(2x-3\right)^2=\left(2x-3\right)\end{matrix}\right.\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)=0\)
=>\(\left(2x-3\right)\left(2x-3-1\right)=0\)
=>\(\left(2x-3\right)\left(2x-4\right)=0\)
=>\(\left[{}\begin{matrix}2x-3=0\\2x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\)
b: \(\left(x-1\right)^2+\left(2x-1\right)^2=0\)
=>\(x^2-2x+1+4x^2-4x+1=0\)
=>\(5x^2-6x+2=0\)
\(\Delta=\left(-6\right)^2-4\cdot5\cdot2=36-20\cdot2=-4< 0\)
=>Phương trình vô nghiệm
c: ĐKXĐ: x>=0
\(x-2\sqrt{x}=0\)
=>\(\sqrt{x}\cdot\sqrt{x}-2\cdot\sqrt{x}=0\)
=>\(\sqrt{x}\left(\sqrt{x}-2\right)=0\)
=>\(\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(nhận\right)\end{matrix}\right.\)
d: \(\left(x-1\right)^2+\dfrac{1}{7}=0\)
mà \(\left(x-1\right)^2+\dfrac{1}{7}>=\dfrac{1}{7}>0\forall x\)
nên \(x\in\varnothing\)
bài 1 chứng minh giá trị của biểu thức ko phụ thuộc vào giá trị của x
a,A=3(x-1)2-(x+1)2+2(x-3)(x+3)-(2x+3)2-(5-20x)
b,B=-x(x+2)2+(2x+1)2+(x+3)(x2-3x+9)-1
bài 2 rút gọn biểu thưc
a,27(1-x)(x2+x+1)+81(x-1)
b,y[x2+x(x-y)+(x-y)2 ]+(x-y)3
tìm x
a) (x+2)(x+3)-(x-2)(x+5)=6
b) (3x+2)(2x+9)-(x+2)(6x+1)=(x+1)-(x-6)
c) 3(2x-1)(3x-1)-(2x-3)(9x-1)=0
a: Ta có: \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=6\)
\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)
\(\Leftrightarrow2x=-10\)
hay x=-5
b: Ta có: \(\left(3x+2\right)\left(2x+9\right)-\left(x+2\right)\left(6x+1\right)=\left(x+1\right)-\left(x-6\right)\)
\(\Leftrightarrow6x^2+27x+4x+18-6x^2-x-12x-2=x+1-x+6\)
\(\Leftrightarrow18x+16=7\)
hay \(x=-\dfrac{1}{2}\)
c: Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-2x-3x+1\right)-\left(18x^2-2x-27x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+27x-3=0\)
hay x=0
Tìm x
a)(2x+1)(x-2)-2x²=0
b)(x+3)(2x-1)+x²=9
a) \(\left(2x+1\right)\left(x-2\right)-2x^2=0\)
\(\Leftrightarrow2x^2-4x+x-2-2x^2=0\)
\(\Leftrightarrow\left(2x^2-2x^2\right)-\left(4x-x\right)-2=0\)
\(\Leftrightarrow-3x-2=0\)
\(\Leftrightarrow-3x=2\)
\(\Leftrightarrow x=-\dfrac{2}{3}\)
b) \(\left(x+3\right)\left(2x-1\right)+x^2=9\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)+x^2-9=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)+\left(x+3\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1+x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\3x=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{4}{3}\end{matrix}\right.\)
`#3107.101107`
a)
`(2x + 1)(x - 2) - 2x^2 = 0`
`<=> 2x^2 - 3x - 2 - 2x^2 = 0`
`<=> -3x - 2 = 0`
`<=> -3x = 2`
`<=> x = -2/3`
Vậy, `x=-2/3`
b)
`(x + 3)(2x - 1) + x^2 = 9`
`<=> 2x^2 - 5x - 3 + x^2 = 9`
`<=> 3x^2 - 5x - 3 = 9`
`<=> 3x^2 - 3x - 12 = 0`
`<=> 3x^2 + 4x - 9x - 12 = 0`
`<=> (3x^2 - 9x) + (4x - 12) = 0`
`<=> 3x(x - 3) + 4(x - 3) = 0`
`<=> (3x + 4)(x - 3) = 0`
`<=>` TH1: `3x + 4 = 0`
`<=> 3x = -4`
`<=> x = -4/3`
TH2: `x - 3 = 0`
`<=> x = 3`
Vậy,` x \in {-4/3; 3}.`
Tìm x
a. 4(x-3)^2-(2x-1)(2x+1)=10
b. x^3-25x=0
\(a,\Leftrightarrow4x^2-24x+36-4x^2+1=10\\ \Leftrightarrow-24x=-27\Leftrightarrow x=\dfrac{9}{8}\\ b,\Leftrightarrow x\left(x^2-25\right)=0\\ \Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
\(a,4.\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(\Leftrightarrow4.\left(x^2-6x+9\right)-\left(2x^2\right)-1^2=10\)
\(\Leftrightarrow4x^2-24x+36-4x^2+1=10\)
\(\Leftrightarrow-24x+27=10\)
\(\Leftrightarrow-24x=-27\)
\(\Leftrightarrow x=\dfrac{27}{24}\)
Vậy \(x=\dfrac{27}{24}\)
\(b,x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-25\right)=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
Vậy \(x\in\left\{0;\pm5\right\}\)