Những câu hỏi liên quan
BT
Xem chi tiết
NT
26 tháng 7 2023 lúc 14:47

1:

a: \(A=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

căn x+1>=1

=>2/căn x+1<=2

=>-2/căn x+1>=-2

=>A>=-2+1=-1

Dấu = xảy ra khi x=0

b: loading...

Bình luận (0)
NN
Xem chi tiết
NT
14 tháng 8 2021 lúc 21:25

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

Bình luận (0)
NT
14 tháng 8 2021 lúc 21:48

c: Ta có: \(x+\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ

\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}>0\forall x\)

Bình luận (0)
DL
Xem chi tiết
NT
11 tháng 10 2021 lúc 0:14

a: Ta có: \(A=\left(1-\dfrac{2\sqrt{x}-2}{x-1}\right):\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{x\sqrt{x}+1}\right)\)

\(=\dfrac{x-1-2\sqrt{x}+2}{x-1}:\dfrac{x-\sqrt{x}+1-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}\)

Bình luận (0)
NT
Xem chi tiết
NM
Xem chi tiết
AT
12 tháng 7 2021 lúc 15:44

a) \(P=\dfrac{3x+3\sqrt{x}-9}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\left(x\ge0,x\ne1\right)\)

\(=\dfrac{3x+3\sqrt{x}-9}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\dfrac{3x+3\sqrt{x}-9+\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)

b) \(P=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}=\dfrac{3\sqrt{x}+6+2}{\sqrt{x}+2}=3+\dfrac{2}{\sqrt{x}+2}\)

Để \(P\in Z\Rightarrow2⋮\sqrt{x}+2\Rightarrow\sqrt{x}+2=2\left(\sqrt{x}+2\ge2\right)\)

\(\Rightarrow x=0\)

c) Ta có: \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\dfrac{2}{\sqrt{x}+2}\le1\Rightarrow3+\dfrac{2}{\sqrt{x}+2}\le4\)

\(\Rightarrow P_{max}=4\) khi \(x=0\)

Bình luận (0)
H24
Xem chi tiết
HT
15 tháng 3 2022 lúc 21:03

Đặt A=\(\dfrac{\sqrt{x}-1}{x+\sqrt{x}+2}\)\(\Rightarrow Ax+A\sqrt{x}+2A-\sqrt{x}+1=0\)

\(\Leftrightarrow Ax+\sqrt{x}\left(A-1\right)+2A+1=0\)

\(\Delta=\left(A-1\right)^2-4A\left(2A+1\right)=A^2-2A+1-8A^2-4A\)\(=-7A^2-6A+1\ge0\)

\(\Rightarrow-1\le A\le\dfrac{1}{7}\)

Vậy Max A là \(\dfrac{1}{7}\)

Dâu"=" xảy ra \(\Leftrightarrow A=\dfrac{1}{7}\)

\(\Leftrightarrow7\sqrt{x}-7=x+\sqrt{x}+2\)

\(\Leftrightarrow x-6\sqrt{x}+9=0\)

\(\Leftrightarrow\left(\sqrt{x}-3\right)^2=0\Leftrightarrow x=9\)

Bình luận (0)
TG
Xem chi tiết
NL
20 tháng 8 2021 lúc 13:58

\(A=\dfrac{2\sqrt{x}+1-\sqrt{x}}{2\sqrt{x}+1}=1-\dfrac{\sqrt{x}}{2\sqrt{x}+1}\)

Do \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\2\sqrt{x}+1>0\end{matrix}\right.\) \(\Rightarrow\dfrac{\sqrt{x}}{2\sqrt{x}+1}\ge0\)

\(\Rightarrow A\le1\)

\(A_{max}=1\) khi \(x=0\)

Bình luận (0)
H24
Xem chi tiết
NT
2 tháng 8 2023 lúc 19:24

1:

\(A=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

3: A nguyên

=>-5căn x-15+17 chia hết cho căn x+3

=>căn x+3 thuộc Ư(17)

=>căn x+3=17

=>x=196

Bình luận (0)
H24
4 tháng 8 2023 lúc 10:09
Bình luận (0)
NT
Xem chi tiết