Tìm N biết N+x2y-xy2=x2y+2xy+xy2-1
Giúp tôi với tôi cần gấp.
1. Tính tổng của hai đa thức trong mỗi trường hợp sau :
a, P= x2y + x3 - xy2 +3 và Q= x3 + xy2 - xy - 6
b, M= x2y + 0,5xy3 - 7,5 x3y2 + x3 và N= 3xy3 - x2y + 5,5x3y2
a/ \(P+Q=\left(x^2y+x^3-xy^2+3\right)+\left(x^3+xy^2-xy-6\right)\)
\(=x^2y+x^3-xy^2+3+x^3+xy^2-xy-6\)
\(=\left(x^3+x^3\right)+\left(xy^2-xy^2\right)+\left(3-6\right)+x^2y-xy\)
\(=2x^3+x^2y-xy-3\)
b/ \(M+N=\left(x^2y+0,5xy^3-7,5x^3y^2+x^3\right)+\)
\(\left(3xy^3-x^2y+5,5x^3y^2\right)\)
\(=x^2y+0,5xy^3-7,5x^3y^2+x^3+3xy^3-x^2y+5,5x^3y^2\)
\(=\left(x^2y-x^2y\right)+\left(0,5xy^3+3xy^3\right)+\left(5,5x^3y^2-7,5x^3y^2\right)+x^3\)
\(=3,5xy^3-2x^3y^2+x^3\)
Cho đa thức A = 5 x2y + xy – xy2 - x2y + 2xy + x2y + xy + 6. Thu gọn rồi xác định bậc của đa thức.
a/ Tìm đa thức B sao cho A + B = 0
b/ Tìm đa thức C sao cho A + C = -2xy + 1
Bài 6: Cho đa thức F(x) = 2x3 – x5 + 3x4 + x2 - x3 + 3x5 – 2x2 - x4 + 1
\(A=5x^2y-xy^2+4xy+6\) bậc : 3
a)\(B=-5x^2y+xy^2-4xy-6\)
b)\(=>C=-2xy+1-5x^2y+xy^2-4xy-6\)
\(C=-5x^2y+xy^2-6xy-5\)
Cho hai đa thức A = x 2 y - x y 2 + 3 x 2 , B = x 2 y + x y 2 - 2 x 2 - 1 . Tính đa thức A + 2B.
A. 2 x 2 y + x y 2 - x 2 - 2
B. 3 x 2 y - x 2 - 2
C. 3 x 2 y + x y 2 - x 2 - 2
D. 2 x 2 y + x y 2 - x 2 - 2
Ta có A + 2B = (x2y - xy2 + 3x2) + 2(x2y + xy2 - 2x2 - 1)
= x2y - xy2 + 3x2 + 2x2y + 2xy2 - 4x2 - 2
= 3x2y + xy2 - x2 - 2. Chọn C
Tính giá trị của các biểu thức: x3 + x2y + xy2 + 2xy(x + y)
biết x + y = 2
Đề sai r bn, nếu x,y thay đổi thì tổng biểu thức cũng thay đổi
x 2 + x y x 3 + x 2 y + x y 2 + y 3 + y x 2 + y 2 : 1 x - y - 2 x y x 3 - x 2 y + x y 2 - y 3
Thu gọn đa thức và tìm bậc
A= x2y + \(\dfrac{\text{1}}{\text{3}}\)xy2 + \(\dfrac{\text{3}}{\text{5}}\)xy2 - 2xy + 3x2y - \(\dfrac{\text{2}}{\text{3}}\)
B= \(\dfrac{\text{9}}{\text{5}}\)xy2z + 2x3y2z + \(\dfrac{\text{1}}{\text{5}}\)xy2z - 2x3y2z - 1
\(A=4x^2y+\dfrac{14}{15}xy^2-2xy-\dfrac{2}{3}\) bậc : 3
\(B=2xy^2z-1\) bậc :4
+ Thu gọn :
\(A=4x^2y+\dfrac{14}{15}xy^2-2xy-\dfrac{2}{3}\)
\(B=2xy^2z-1\)
+ Bậc
Đa thức \(A\) có 4 hạng tử :
\(4x^2y\) có bậc \(3\)
\(\dfrac{14}{15}xy^2\) có bậc \(3\)
\(-2xy\) có bậc \(2\)
\(-\dfrac{2}{3}\) có bậc \(0\)
Đa thức \(B\) có \(2\) hạng tử :
\(2xy^2z\) có bậc \(4\)
\(-1\) có bậc \(0\)
Chứng minh:
a) (x-1)(x2+x+1)=x3-1
b) (x3+x2y+xy2+y3)(x-y)=x4y4
Giúp ta vs ta cần gấp lém :(((
`a)(x-1)(x^2+x+1)`
`=x^3+x^2+x-x^2-x-1`
`=x^3-1`
`b)(x^3+x^2y+xy^2+y^3)(x-y)`
`=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4`
`=x^4-y^4`
a) VT`=(x-1)(x^2+x+1)`
`=x^3 +x^2 +x -x^2-x-1 `
`=x^3-1=` VP.
b) VT `=(x^3+x^2y+xy^2+y^3)(x-y)`
`=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4`
`=x^4-y^4=` VP.
Rút gọn biểu thức
a, (8x3-4x2):4x-(4x2-5x):2x+(2x)2
b, (3x3-x2y):x2-(xy2+x2y):xy+2x(x+1)
GIÚP MÌNH NHA
a, `(8x^3-4x^2): 4x -(4x^2-5x) : 2x + (2x)^2`
`=4x (2x^2-x) : 4x - 2x(2x-5/2 ) :2x + 4x^2`
`=2x^2-x-2x+5/2+4x^2`
`=6x^2-3x+5/2`
b, `(3x^3-x^2y) :x^2 -(xy^2+x^2y) :xy + 2x(x+1)`
`=x^2 (3x-y) :x^2 -xy(y+x) + (2x^2+2x)`
`=3x-y-y-x+2x^2+2x`
`=2x^2+4x-2y`
phân tích đa thức thành nhân tử
a)70a+84b-20ab-24b2
b) x2y+xy2+x2z+xz2+y2z+yz2+3xyz
c) x2y+xy2+x2z+xz2+y2z+yz2+2xyz
a: \(70a+84b-20ab-24b^2\)
\(=\left(70a+84b\right)-\left(20ab+24b^2\right)\)
\(=14\left(5a+6b\right)-4b\left(5a+6b\right)\)
\(=\left(5a+6b\right)\left(14-4b\right)\)
\(=2\left(7-2b\right)\left(5a+6b\right)\)
b: \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)
\(=\left(x^2y+x^2z\right)+\left(xy^2+xz^2\right)+\left(y^2z+yz^2\right)+3xyz\)
\(=x^2\left(y+z\right)+x\left(y^2+z^2\right)+yz\left(y+z\right)+3xyz\)
\(=x^2\left(y+z\right)+x\left(y^2+z^2\right)+yz\left(y+z\right)+2xyz+xyz\)
\(=x^2\left(y+z\right)+x\left(y^2+z^2+2yz\right)+yz\left(y+z+x\right)\)
\(=x^2\left(y+z\right)+x\left(y+z\right)^2+yz\left(y+z+x\right)\)
\(=\left(y+z\right)\cdot x\left(x+y+z\right)+yz\left(y+z+x\right)\)
\(=\left(y+z+x\right)\cdot\left(xy+xz+yz\right)\)
c: \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)
\(=\left(x^2y+x^2z\right)+\left(xy^2+xz^2+2xyz\right)+\left(y^2z+yz^2\right)\)
\(=x^2\left(y+z\right)+x\left(y^2+z^2+2xz\right)+yz\left(y+z\right)\)
\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y+z\right)^2\)
\(=\left(y+z\right)\left(x^2+yz+xy+xz\right)\)
\(=\left(y+z\right)\left(x+z\right)\left(x+y\right)\)
phân tích đa thức thành nhân tử
a)70a+84b-20ab-24b2
b) x2y+xy2+x2z+xz2+y2z+yz2+3xyz
c) x2y+xy2+x2z+xz2+y2z+yz2+2xyz
a) \(70a+84b-20ab-24b^2\)
\(=\left(70a+84b\right)-\left(20ab+24b^2\right)\)
\(=14\left(5a+6b\right)-4b\left(5a+6b\right)\)
\(=\left(5a+6b\right)\left(14-4b\right)\)
\(=2\left(5a+6b\right)\left(7-2b\right)\)
b) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)
\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xyz+xz^2\right)+\left(xyz+y^2z+yz^2\right)\)
\(=xy\left(x+y+z\right)+xz\left(x+y+z\right)+yz\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(xy+yz+xz\right)\)
c) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)
\(=\left(x^2y+xy^2\right)+\left(xz^2+yz^2\right)+\left(x^2z+2xyz+y^2z\right)\)
\(=xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x^2+2xy+y^2\right)\)
\(=xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x+y\right)^2\)
\(=\left(x+y\right)\left[xy+z^2+z\left(x+y\right)\right]\)
\(=\left(x+y\right)\left(xy+z^2+xz+yz\right)\)
\(=\left(x+y\right)\left[\left(xy+yz\right)+\left(xz+z^2\right)\right]\)
\(=\left(x+y\right)\left[y\left(x+z\right)+z\left(x+z\right)\right]\)
\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
a, 70a + 84b - 20ab - 24b2
= 14.(5a + 6b) - 4b(5a + 6b)
= (5a + 6b).(14 - 4b)
a, 70a + 84b - 20ab - 24b2
= (70a + 84b) - (20ab + 24b2)
= 14.(5a + 6b) - 4b.(5a + 6b)
= (5a + 6b).(14 - 4b)