HD

phân tích đa thức thành nhân tử

a)70a+84b-20ab-24b2

b) x2y+xy2+x2z+xz2+y2z+yz2+3xyz

c) x2y+xy2+x2z+xz2+y2z+yz2+2xyz

NT
26 tháng 11 2023 lúc 20:32

a: \(70a+84b-20ab-24b^2\)

\(=\left(70a+84b\right)-\left(20ab+24b^2\right)\)

\(=14\left(5a+6b\right)-4b\left(5a+6b\right)\)

\(=\left(5a+6b\right)\left(14-4b\right)\)

\(=2\left(7-2b\right)\left(5a+6b\right)\)

b: \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)

\(=\left(x^2y+x^2z\right)+\left(xy^2+xz^2\right)+\left(y^2z+yz^2\right)+3xyz\)

\(=x^2\left(y+z\right)+x\left(y^2+z^2\right)+yz\left(y+z\right)+3xyz\)

\(=x^2\left(y+z\right)+x\left(y^2+z^2\right)+yz\left(y+z\right)+2xyz+xyz\)

\(=x^2\left(y+z\right)+x\left(y^2+z^2+2yz\right)+yz\left(y+z+x\right)\)

\(=x^2\left(y+z\right)+x\left(y+z\right)^2+yz\left(y+z+x\right)\)

\(=\left(y+z\right)\cdot x\left(x+y+z\right)+yz\left(y+z+x\right)\)

\(=\left(y+z+x\right)\cdot\left(xy+xz+yz\right)\)

c: \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)

\(=\left(x^2y+x^2z\right)+\left(xy^2+xz^2+2xyz\right)+\left(y^2z+yz^2\right)\)

\(=x^2\left(y+z\right)+x\left(y^2+z^2+2xz\right)+yz\left(y+z\right)\)

\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y+z\right)^2\)

\(=\left(y+z\right)\left(x^2+yz+xy+xz\right)\)

\(=\left(y+z\right)\left(x+z\right)\left(x+y\right)\)

Bình luận (0)

Các câu hỏi tương tự
BN
Xem chi tiết
LD
Xem chi tiết
AD
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
GV
Xem chi tiết
XY
Xem chi tiết