Những câu hỏi liên quan
NQ
Xem chi tiết
NN
Xem chi tiết
VA
Xem chi tiết

A- Tìm MAX (a^2 + b^2 + c^2) 
Từ ab + bc + ca = 1 <=> ab + c(a + b) = 1 dễ thấy rằng nếu cho a và b những giá trị lớn bao nhiêu cũng được thì bao giờ cũng có 1 số c sao cho ab + bc + ca = 1 (chỉ cần chọn c = (1 - ab)/(a + b) ).Vì a và b lớn bao nhiêu cũng được nên a^2 + b^2 + c^2 cũng lớn bao nhiêu cũng được ---> không có GTLN 

B- Tìm MIN (a^2 + b^2 + c^2) (làm luôn phần này vì có thể bạn chép sai đề) 
a) Cách 1 : Theo BĐT Cauchy, ta có 
...a^2 + b^2 >= 2ab 
...b^2 + c^2 >= 2bc 
...c^2 + a^2 >= 2ac 
...---> 2(a^2 + b^2 + c^2) >= 2(ab + bc + ca) = 2 
...---> a^2 + b^2 + c^2 >= 1 (dấu bằng xảy ra khi a^2 = b^2 = c^2 = 1 và a = b = c <=> a = b = c = (căn 3)/3 hoặc a = b = c = (-căn 3)/3 ) 
Vậy MIN (a^2 + b^2 + c^2) = 1 khi a = b = c = (căn 3)/3 hoặc a = b = c = (- căn 3)/3 
b) Cách 2 : Áp dụng BĐT Bunhiacopski, ta có 
...(a^2 + b^2 + c^2)(b^2 + c^2 + a^2) >= (ab + bc + ca)^2 
...---> a^2 + b^2 + c^2 >= ab + bc + ca = 1 (dấu bằng xảy ra khi a/b = b/c = c/a <=> a = b = c = (căn 3)/3 hoặc a = b = c = (- căn 3)/3 ) 
...---> MIN (a^2 + b^2 + c^2) = 1 khi a = b = c = (căn 3)/3 hoặc a = b = c = (- căn 3)/3 

Bình luận (0)
HH
15 tháng 3 2018 lúc 16:45


A- Tìm MAX (a^2 + b^2 + c^2) 
Từ ab + bc + ca = 1 <=> ab + c(a + b) = 1 dễ thấy rằng nếu cho a và b những giá trị lớn bao nhiêu cũng được thì bao giờ cũng có 1 số c sao cho ab + bc + ca = 1 (chỉ cần chọn c = (1 - ab)/(a + b) ).Vì a và b lớn bao nhiêu cũng được nên a^2 + b^2 + c^2 cũng lớn bao nhiêu cũng được ---> không có GTLN 

B- Tìm MIN (a^2 + b^2 + c^2) (làm luôn phần này vì có thể bạn chép sai đề) 
a) Cách 1 : Theo BĐT Cauchy, ta có 
...a^2 + b^2 >= 2ab 
...b^2 + c^2 >= 2bc 
...c^2 + a^2 >= 2ac 
...---> 2(a^2 + b^2 + c^2) >= 2(ab + bc + ca) = 2 
...---> a^2 + b^2 + c^2 >= 1 (dấu bằng xảy ra khi a^2 = b^2 = c^2 = 1 và a = b = c <=> a = b = c = (căn 3)/3 hoặc a = b = c = (-căn 3)/3 ) 
Vậy MIN (a^2 + b^2 + c^2) = 1 khi a = b = c = (căn 3)/3 hoặc a = b = c = (- căn 3)/3 

đăng bài khó z lm cả 10 phút

Bình luận (0)
HT
24 tháng 9 2019 lúc 21:43

A- Tìm MAX (a^2 + b^2 + c^2) 
Từ ab + bc + ca = 1 <=> ab + c(a + b) = 1 dễ thấy rằng nếu cho a và b những giá trị lớn bao nhiêu cũng được thì bao giờ cũng có 1 số c sao cho ab + bc + ca = 1 (chỉ cần chọn c = (1 - ab)/(a + b) ).Vì a và b lớn bao nhiêu cũng được nên a^2 + b^2 + c^2 cũng lớn bao nhiêu cũng được ---> không có GTLN 

B- Tìm MIN (a^2 + b^2 + c^2) (làm luôn phần này vì có thể bạn chép sai đề) 
a) Cách 1 : Theo BĐT Cauchy, ta có 
...a^2 + b^2 >= 2ab 
...b^2 + c^2 >= 2bc 
...c^2 + a^2 >= 2ac 
...---> 2(a^2 + b^2 + c^2) >= 2(ab + bc + ca) = 2 
...---> a^2 + b^2 + c^2 >= 1 (dấu bằng xảy ra khi a^2 = b^2 = c^2 = 1 và a = b = c <=> a = b = c = (căn 3)/3 hoặc a = b = c = (-căn 3)/3 ) 
Vậy MIN (a^2 + b^2 + c^2) = 1 khi a = b = c = (căn 3)/3 hoặc a = b = c = (- căn 3)/3 
b) Cách 2 : Áp dụng BĐT Bunhiacopski, ta có 
...(a^2 + b^2 + c^2)(b^2 + c^2 + a^2) >= (ab + bc + ca)^2 
...---> a^2 + b^2 + c^2 >= ab + bc + ca = 1 (dấu bằng xảy ra khi a/b = b/c = c/a <=> a = b = c = (căn 3)/3 hoặc a = b = c = (- căn 3)/3 ) 
...---> MIN (a^2 + b^2 + c^2) = 1 khi a = b = c = (căn 3)/3 hoặc a = b = c = (- căn 3)/3 

Bình luận (0)
TD
Xem chi tiết
PQ
27 tháng 10 2018 lúc 21:47

\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\)\(ab+bc+ca\le2\)

\(\Leftrightarrow\)\(2ab+2bc+2ca\le4\)

\(\Leftrightarrow\)\(a^2+b^2+c^2+2ab+2bc+2ca\le6\)

\(\Leftrightarrow\)\(\left(a+b+c\right)^2\le6\)

\(\Leftrightarrow\)\(-\sqrt{6}\le a+b+c\le\sqrt{6}\)

hếy bít làm :vvv 

Bình luận (0)
MA
Xem chi tiết
NL
13 tháng 7 2020 lúc 22:03

\(2=a^2+b^2+c^2\ge b^2+c^2\ge2bc\Rightarrow bc\le1\)

Ta có:

\(P^2=\left(a+b+c-abc\right)^2=\left[a\left(1-bc\right)+\left(b+c\right).1\right]^2\)

\(P^2\le\left[a^2+\left(b+c\right)^2\right]\left[\left(1-bc\right)^2+1\right]\)

\(P^2\le\left(a^2+b^2+c^2+2bc\right)\left(b^2c^2-2bc+2\right)\)

\(P^2\le\left(2+2bc\right)\left(b^2c^2-2bc+2\right)\)

\(P^2\le2\left[\left(bc\right)^3-\left(bc\right)^2+2\right]\le2.2=4\)

\(\Rightarrow-2\le P\le2\)

Min, max xảy ra với \(\left(a;b;c\right)=\left(0;-1;-1\right)\)\(\left(0;1;1\right)\) và các hoán vị

Bình luận (0)
H24
Xem chi tiết
TC
Xem chi tiết
TL
21 tháng 7 2021 lúc 18:27

`A=(2x)^2+2.2x.1+1^2+1=(2x+1)^2+1`

`=> A_(min)=1 <=>x=-1/2`

`B=(\sqrt2x)^2-2.\sqrt2 x . \sqrt2/2 + (\sqrt2/2)^2 + 1/2`

`=(\sqrt2x-\sqrt2/2)^2+1/2`

`=> B_(min)=1/2 <=> x=1/2`

`C=-(x^2-2.x.3+3^2+6)=-(x-3)^2-6`

`=> C_(max)=-6 <=> x=3`

Bình luận (0)
HT
Xem chi tiết
H24
7 tháng 1 2020 lúc 18:36

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

Bình luận (0)
 Khách vãng lai đã xóa
H24
7 tháng 1 2020 lúc 20:28

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)

Bình luận (0)
 Khách vãng lai đã xóa
H24
7 tháng 1 2020 lúc 20:29

í lộn, bài 4:v Bài 3 thấy quen quen, đợi chút em lục lại@Hoàng Quốc Tuấn 

Bình luận (0)
 Khách vãng lai đã xóa
LP
Xem chi tiết
H24
1 tháng 9 2017 lúc 20:51

 P = x(x/2+1/yz) + y(y/2+1/zx) + z(z/2+1/xy) 

= ½ [x(xyz +2)/(yz) + y(xyz +2)/(xz) + z(xyz +2)/(xy)]

= ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz)

Lại có: xyz + 2 = xyz + 1 +1 ≥ 3 ³√(xyz) 

Suy ra: 

P = ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz) 

≥ 3/2 .3 ³√(xyz)/ ³√(xyz) = 9/2 

Vậy P min = 9/2 

Dấu = xra khi x = y = z = 1 

Bình luận (0)
LP
1 tháng 9 2017 lúc 20:52

Bài 1: 
Ta có 
A =x/(x+1) +y/(y+1)+z/(z+1) 
A= 1- 1/(x+1)+1-1/(y+1) +1-1/(z+1) 
A=3- [1/(x+1)+1/(y+1) +1/(z+1) ] 
B = 1/(x+1)+1/(y+1) +1/(z+1) 
Đặt x+1=a; y+1=b;z+1 =c 
=>a+b+c=4 
4B=4(1/a+1/b+1/c) 
B= (a+b+c) (1/a+1/b+1/c) 
4B =3+(a/b+b/a) +(a/c+c/a)+(b/c+c/a) 

Từ (a-b)^2 ≥ 0 =>a^2+b^2 ≥ 2ab chia 2 vế cho ab 
=> a/b+b/a ≥2 dấu "=" khi a=b 
Tương tự có 
a/c+c/a ≥2 ;b/c+c/b ≥2 
=>4B ≥3+2+2+2=9 
=>B ≥ 9/4 
=>A ≤ 3-9/4 = 3/4 
Vậy max A =3/4 khi a=b=c 
=>x=y=z =1/3 

Bài 2:

Giúp tui nha

Bình luận (0)
TC
Xem chi tiết
AH
21 tháng 7 2021 lúc 17:50

Lời giải:
$C=-15-x^2+6x=-6-(x^2-6x+9)=-6-(x-3)^2$

Vì $(x-2)^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow C\leq -6< 0$

Vậy $C$ luôn âm.

 

Bình luận (0)