Tìm m thuộc R để :
x2 -2mx +3m-2>0 với mọi x thuộc (\(-\infty;4\))
1.Tìm m để bpt \(2\left|x-m\right|+x^2+2>2mx\) thỏa mãn với mọi x
2. Tìm m để bpt : \(x^2+2\left|x+m\right|+2mx+3m^2-3m+1< 0\) có nghiệm
1.
\(2\left|x-m\right|+x^2+2>2mx\)
\(\Leftrightarrow\left(x-m\right)^2+2\left|x-m\right|-m^2+2>0\)
\(\Leftrightarrow t^2+2t-m^2+2>0\left(t=\left|x-m\right|\ge0\right)\)
\(\Leftrightarrow m^2< f\left(t\right)=t^2+2t+2\)
Yêu cầu bài toán thỏa mãn khi \(m^2< minf\left(t\right)=2\)
\(\Leftrightarrow-\sqrt{2}< m< 2\)
Vậy \(-\sqrt{2}< m< 2\)
2.
\(x^2+2\left|x+m\right|+2mx+3m^2-3m+1< 0\)
\(\Leftrightarrow\left(x+m\right)^2+2\left|x+m\right|+2m^2-3m+1< 0\)
\(\Leftrightarrow\left(\left|x+m\right|+1\right)^2< -2m^2+3m\)
Ta có \(VT=\left(\left|x+m\right|+1\right)^2=\left(-\left|x+m\right|-1\right)^2\le\left(-1\right)^2=1\)
Yêu cầu bài toán thỏa mãn khi \(VP=-2m^2+3m>1\)
\(\Leftrightarrow2m^2-3m+1< 0\)
\(\Leftrightarrow\dfrac{1}{2}< m< 1\)
\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)
\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)
\(\Leftrightarrow-7m^2+38m-15< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)
\(KL:m\in\left(5;+\infty\right)\)
\(2x^2-2mx+3m-1\ge0\), với mọi x thuộc R
Δ=(-2m)^2-4*2*(3m-1)
=4m^2-24m+8
Để BPT luôn đúng với mọi x thì Δ<=0
=>4m^2-24m+8<=0
=>\(3-\sqrt{7}< =m< =3+\sqrt{7}\)
Tìm đk của m để bpt sau nghiệm đúng trên khoảng đã chỉ ra :
1. \(\left(m+1\right)x^2-2mx+4m\)> 0 với mọi x<0
2.\(_{x^2-2mx+3m-2>0}\)với x thuộc khoảng từ 1 đến 2
Tìm giá trị thực của tham số m để parabol (P): y = m x 2 − 2mx − 3m − 2 (m ≠ 0) có đỉnh thuộc đường thẳng y = 3x − 1.
A. m = 1
B. m = -1
C. m = - 6
D. m = 6
tìm m để hàm số sau đây xác định với mọi x thuộc khoảng\(\left(0;+\infty\right)\): \(y=\sqrt{2x-3m+4}+\frac{x-m}{m+x+1}\)
Cho f(x)=(m+1)x2-2(m-1)x-m+4 tìm m để f(x)>0 với mọi x thuộc R
\(f\left(x\right)>0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\left[-2\left(m-1\right)\right]^2-4\left(m+1\right)\left(-m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\4\left(m^2-2m+1\right)-4\left(-m^2+4m-m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow4m^2-8m+4+4m^2-12m-16< 0\)
\(\Leftrightarrow8m^2-20m-12< 0\)
\(KL:m\in\left(-1;3\right)\)
Cho f(x)=x^2+2mx+m+6
Tìm m để f(x) > 0 với mọi x thuộc R
\(f(x)=x^2+2mx+m+6\)
Để $f(x) >0 \forall x \in \mathbb{R}$ thì \(\left\{{}\begin{matrix}1>0\\\Delta'< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\in R\\m^2-\left(m+6\right)< 0\end{matrix}\right.\)\(\Leftrightarrow m^2-m-6< 0\Leftrightarrow-2< m< 3\)
KL: ....................
Tìm m để các hàm số sau đây xác định với mọi x thuộc khoảng\(\left(0;+\infty\right)\).
\(y=\sqrt{2x-3m+4}+\frac{x-m}{x=m-1}\)