Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

H24

1.Tìm m để bpt \(2\left|x-m\right|+x^2+2>2mx\) thỏa mãn với mọi x

2. Tìm m để  bpt  : \(x^2+2\left|x+m\right|+2mx+3m^2-3m+1< 0\) có nghiệm 

HP
19 tháng 3 2021 lúc 17:15

1.

\(2\left|x-m\right|+x^2+2>2mx\)

\(\Leftrightarrow\left(x-m\right)^2+2\left|x-m\right|-m^2+2>0\)

\(\Leftrightarrow t^2+2t-m^2+2>0\left(t=\left|x-m\right|\ge0\right)\)

\(\Leftrightarrow m^2< f\left(t\right)=t^2+2t+2\)

Yêu cầu bài toán thỏa mãn khi \(m^2< minf\left(t\right)=2\)

\(\Leftrightarrow-\sqrt{2}< m< 2\)

Vậy \(-\sqrt{2}< m< 2\)

Bình luận (0)
HP
19 tháng 3 2021 lúc 17:25

2.

\(x^2+2\left|x+m\right|+2mx+3m^2-3m+1< 0\)

\(\Leftrightarrow\left(x+m\right)^2+2\left|x+m\right|+2m^2-3m+1< 0\)

\(\Leftrightarrow\left(\left|x+m\right|+1\right)^2< -2m^2+3m\)

Ta có \(VT=\left(\left|x+m\right|+1\right)^2=\left(-\left|x+m\right|-1\right)^2\le\left(-1\right)^2=1\)

Yêu cầu bài toán thỏa mãn khi \(VP=-2m^2+3m>1\)

\(\Leftrightarrow2m^2-3m+1< 0\)

\(\Leftrightarrow\dfrac{1}{2}< m< 1\)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
LN
Xem chi tiết
TV
Xem chi tiết
TH
Xem chi tiết
QN
Xem chi tiết
H24
Xem chi tiết
VD
Xem chi tiết
NC
Xem chi tiết
NH
Xem chi tiết