Những câu hỏi liên quan
SK
Xem chi tiết
HB
26 tháng 4 2017 lúc 19:39

Giải bài 4 trang 154 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 4 trang 154 SGK Đại Số 10 | Giải toán lớp 10

Bình luận (0)
NT
Xem chi tiết
NL
21 tháng 5 2020 lúc 15:07

\(\frac{cos\left(a-b\right)}{sin\left(a+b\right)}=\frac{cosa.cosb+sina.sinb}{sina.cosb+cosa.sinb}=\frac{\frac{cosa.cosb}{sina.sinb}+1}{\frac{sina.cosb}{sina.sinb}+\frac{cosa.sinb}{sina.sinb}}=\frac{cota.cotb+1}{cota+cotb}\)

Bạn ghi đề ko đúng

\(sin\left(a+b\right)sin\left(a-b\right)=\frac{1}{2}\left[cos2b-cos2a\right]\)

\(=\frac{1}{2}\left[1-2sin^2b-1+2sin^2a\right]\)

\(=sin^2a-sin^2b\)

\(=1-cos^2a-1+cos^2b=cos^2b-cos^2a\)

Câu này bạn cũng ghi đề ko đúng

\(cos\left(a+b\right)cos\left(a-b\right)=\frac{1}{2}\left[cos2a+cos2b\right]\)

\(=\frac{1}{2}\left[2cos^2a-1+1-2sin^2b\right]=cos^2a-sin^2b\)

\(=1-sin^2a-1+cos^2b=cos^2b-sin^2a\)

Bình luận (0)
TT
Xem chi tiết
LY
Xem chi tiết
PD
Xem chi tiết
ML
Xem chi tiết
NL
28 tháng 4 2020 lúc 12:21

\(C=2sin3x.cos3x.\frac{cos3x}{sin3x}-\left(cos^23x-sin^23x\right)\)

\(=2cos^23x-cos^23x+sin^23x=cos^23x+sin^23x=1\)

\(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}\right)\)

\(=\sqrt{2}\left(sinx.sin\frac{\pi}{4}-cosx.cos\frac{\pi}{4}\right)=-\sqrt{2}\left(cosx.cos\frac{\pi}{4}-sinx.sin\frac{\pi}{4}\right)=-\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)

Câu này bạn ghi nhầm đề (lưu ý rằng \(sin\frac{\pi}{4}=cos\frac{\pi}{4}=\frac{\sqrt{2}}{2}\))

Câu 2b bạn cũng xem lại đề, chắc chắn ko đúng

\(\frac{A}{2}+\frac{B}{2}+\frac{C}{2}=90^0\Rightarrow sin\frac{A}{2}=cos\left(\frac{B}{2}+\frac{C}{2}\right)=cos\frac{B}{2}cos\frac{C}{2}-sin\frac{B}{2}sin\frac{C}{2}\)

Câu 3 bạn cũng ghi sai đề luôn

Trong 1 ngày đẹp trời thì câu 4 cũng sai luôn cho đỡ lạc lõng đồng đội:

\(sin\left(a+b-b\right)=sin\left(a+b\right)cosb-cos\left(a+b\right)sinb=2sin\left(a+b\right)\)

\(\Leftrightarrow sin\left(a+b\right)\left[cosb-2\right]=cos\left(a+b\right).sinb\)

\(\Leftrightarrow\frac{sin\left(a+b\right)}{cos\left(a+b\right)}=\frac{sinb}{cosb-2}\Leftrightarrow tan\left(a+b\right)=\frac{sinb}{cosb-2}\)

4 câu bạn ghi đúng đề bài duy nhất câu 1, kinh thiệt :(

Bình luận (0)
H24
Xem chi tiết
NL
15 tháng 2 2019 lúc 23:34

Áp dụng công thức biến tích thành tổng:

\(cos\left(a+b\right).cos\left(a-b\right)=\dfrac{1}{2}\left(cos2a+cos2b\right)\)

\(=\dfrac{1}{2}\left(2cos^2a-1+1-2sin^2b\right)=\dfrac{1}{2}\left(2cos^2a-2sin^2b\right)\)

\(=cos^2a-sin^2b\)

\(cos\left(\dfrac{\pi}{4}+a\right).cos\left(\dfrac{\pi}{4}-a\right)+\dfrac{1}{2}sin^2a=\dfrac{1}{2}\left(cos\dfrac{\pi}{2}+cos2a\right)+\dfrac{1}{2}sin^2a\)

\(=\dfrac{1}{2}cos2a+\dfrac{1}{2}sin^2a=\dfrac{1}{2}\left(cos^2a-sin^2a\right)+\dfrac{1}{2}sin^2a\)

\(=\dfrac{1}{2}cos^2a\)

Bình luận (0)
HH
Xem chi tiết
NL
2 tháng 8 2020 lúc 5:55

\(A=\frac{1}{2}-\frac{1}{2}cos\left(2a-2b\right)+\frac{1}{2}-\frac{1}{2}cos2b+2sin\left(a-b\right)sinb.cosa\)

\(=1-\frac{1}{2}\left[cos\left(2a-2b\right)+cos2b\right]+2sin\left(a-b\right)sinb.cosa\)

\(=1-cosa.cos\left(a-2b\right)+2sin\left(a-b\right).sinb.cosa\)

\(=1-cosa\left[cos\left(a-2b\right)-2sin\left(a-b\right)sinb\right]\)

\(=1-cosa\left[cos\left(a-2b\right)+cosa-cos\left(a-2b\right)\right]\)

\(=1-cosa^2=sin^2a\)

Hoàn toàn tương tự:

\(B=1+cos\left(2a+b\right).cosb-2cosa.cosb.cos\left(a+b\right)\)

\(=1+cosb\left[cos\left(2a+b\right)-2cosa.cos\left(a+b\right)\right]\)

\(=1+cosb\left[cos\left(2a+b\right)-cos\left(2a+b\right)-cosb\right]\)

\(=1-cos^2b=sin^2b\)

Bình luận (0)
NN
Xem chi tiết
PA
7 tháng 8 2017 lúc 14:44

~ ~ ~ Áp dụng đẳng thức \(\left(a+b\right)^2+\left(a-b\right)^2=2\left(a^2+b^2\right)\) ~ ~ ~

a)

\(\left(\sin\alpha+\cos\alpha\right)^2-2\sin\alpha\cos\alpha-1\)

\(=\left(\sin\alpha+\cos\alpha\right)^2-\left(2\sin\alpha\cos\alpha+\sin^2\alpha+\cos^2\alpha\right)\)

\(=\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha+\cos\alpha\right)^2\)

= 0

b)

\(\left(\sin\alpha-\cos\alpha\right)^2+2\sin\alpha\cos\alpha+1\)

\(=\left(\sin\alpha-\cos\alpha\right)^2+2\sin\alpha\cos\alpha+\sin^2\alpha+\cos^2\alpha\)

\(=\left(\sin\alpha-\cos\alpha\right)^2+\left(\sin\alpha+\cos\alpha\right)^2\)

\(=2\left(\sin^2\alpha+\cos^2\alpha\right)\)

= 2

c)

\(\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2+2\)

\(=2\left(\sin^2\alpha+\cos^2\alpha\right)+2\)

= 4

d)

\(\sin^2\alpha\cot^2\alpha+\cos^2\alpha\tan^2\alpha\)

\(=\left(\sin\times\dfrac{\cos}{\sin}\right)^2+\left(\cos\times\dfrac{\sin}{\cos}\right)^2\)

= 1

Bình luận (0)