§1. Cung và góc lượng giác

ML

1. Rút gọn biểu thức sau: C = \(sin6x\times cot3x-cos6x\)

2. Chứng minh các đẳng thức sau:
a) \(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)
b) \(\frac{cos\left(a+b\right)\times cos\left(a-b\right)}{sin^2a+sin^2b}=cot^2a\times cot^2b-1\)

3. Cho \(\Delta ABC\). Chứng minh rằng: \(sin\frac{A}{2}=cos\frac{B}{2}\times cos\frac{C}{2}-sin\frac{C}{2}\times cos\frac{B}{2}\)

4. Chứng minh: Nếu \(sina=2sin\left(a+b\right)\) thì \(tan\left(a+b\right)=\frac{sina}{cosb-2}\)

MONG MỌI NGƯỜI GIÚP ĐỠ CHO MÌNH! CẢM ƠN RẤT NHIỀU!

NL
28 tháng 4 2020 lúc 12:21

\(C=2sin3x.cos3x.\frac{cos3x}{sin3x}-\left(cos^23x-sin^23x\right)\)

\(=2cos^23x-cos^23x+sin^23x=cos^23x+sin^23x=1\)

\(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}\right)\)

\(=\sqrt{2}\left(sinx.sin\frac{\pi}{4}-cosx.cos\frac{\pi}{4}\right)=-\sqrt{2}\left(cosx.cos\frac{\pi}{4}-sinx.sin\frac{\pi}{4}\right)=-\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)

Câu này bạn ghi nhầm đề (lưu ý rằng \(sin\frac{\pi}{4}=cos\frac{\pi}{4}=\frac{\sqrt{2}}{2}\))

Câu 2b bạn cũng xem lại đề, chắc chắn ko đúng

\(\frac{A}{2}+\frac{B}{2}+\frac{C}{2}=90^0\Rightarrow sin\frac{A}{2}=cos\left(\frac{B}{2}+\frac{C}{2}\right)=cos\frac{B}{2}cos\frac{C}{2}-sin\frac{B}{2}sin\frac{C}{2}\)

Câu 3 bạn cũng ghi sai đề luôn

Trong 1 ngày đẹp trời thì câu 4 cũng sai luôn cho đỡ lạc lõng đồng đội:

\(sin\left(a+b-b\right)=sin\left(a+b\right)cosb-cos\left(a+b\right)sinb=2sin\left(a+b\right)\)

\(\Leftrightarrow sin\left(a+b\right)\left[cosb-2\right]=cos\left(a+b\right).sinb\)

\(\Leftrightarrow\frac{sin\left(a+b\right)}{cos\left(a+b\right)}=\frac{sinb}{cosb-2}\Leftrightarrow tan\left(a+b\right)=\frac{sinb}{cosb-2}\)

4 câu bạn ghi đúng đề bài duy nhất câu 1, kinh thiệt :(

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
AH
Xem chi tiết
AH
Xem chi tiết
TD
Xem chi tiết
DD
Xem chi tiết
CC
Xem chi tiết
LN
Xem chi tiết
XT
Xem chi tiết
TH
Xem chi tiết