Những câu hỏi liên quan
PB
Xem chi tiết
NT
28 tháng 2 2022 lúc 10:55

a: Số đo góc ở đỉnh là \(180^0-2\cdot50^0=80^0\)

b: Số đo góc ở đáy là \(\dfrac{180^0-70^0}{2}=55^0\)

c: Vì ΔABC cân tại A

nên \(\widehat{B}=\widehat{C}=\dfrac{180^0-\widehat{A}}{2}\)

Bình luận (0)
PA
Xem chi tiết
HA
21 tháng 3 2020 lúc 8:43

XÉT \(\Delta ABC\)CÂN TẠI A

\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

TA CÓ \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)

THAY\(50^0+\widehat{B}+\widehat{C}=180^o\)

                      \(\widehat{B}+\widehat{C}=130^o\)

\(\widehat{B}=\widehat{C}\)

\(\Rightarrow\widehat{B}=\widehat{C}=\frac{130^o}{2}=65^o\)

TA CÓ \(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)

\(\Rightarrow\widehat{DBA}=180^o-65^o=115^o\)

TA CÓ\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)

\(\Rightarrow\widehat{ACE}=180^o-65^0=115^o\)

XÉT \(\Delta ACE\)CÓ AC=CE (GT) =>\(\Delta ACE\)CÂN TẠI C 

\(\Rightarrow\widehat{CAE}=\widehat{AEC}=\frac{180^o-115^0}{2}=32,5^0\)

XÉT \(\Delta ABD\)CÓ AB=BD (GT) =>\(\Delta ABD\)CÂN TẠI B

\(\Rightarrow\widehat{DAB}=\widehat{ADB}=\frac{180^o-115^0}{2}=32,5^0\)

TA CÓ\(\widehat{DAB}+\widehat{BAC}+\widehat{EAC}=\widehat{DAE}\)

THAY\(32,5^o+50^0+32,5^0=\widehat{DAE}\)

       \(\Rightarrow\widehat{DAE}=115^0\)

Bình luận (0)
 Khách vãng lai đã xóa
PN
Xem chi tiết
CC
Xem chi tiết
CC
13 tháng 3 2019 lúc 19:44

ta co goc b = goc c (vi tam giac abc can tai a )= goc 180 do - goc a / 2 =180 do - 90 do /2=45 do.

Bình luận (0)
TT
Xem chi tiết
NH
Xem chi tiết
KL
17 tháng 8 2023 lúc 8:41

loading... 1.

a) Do ∆ABC cân tại A (gt)

⇒ AB = AC và ∠ABC = ∠ACB (1)

Do BE là đường trung tuyến của ∆ABC (gt)

⇒ E là trung điểm của AC

⇒ AE = CE = AC/2   (2) 

Do CF là đường trung tuyến của ∆ABC (gt)

⇒ F là trung điểm của AB

⇒ AF = BF = AB/2   (3)

Từ (1), (2) và (3) ⇒ BF = CE

Do ∠ABC = ∠ACB (cmt)

⇒ ∠FBC = ∠ECB

Xét ∆BFC và ∆CEB có:

BF = CE (cmt)

∠FBC = ∠ECB (cmt)

BC chung

⇒ ∆BFC = ∆CEB (c-g-c)

⇒ CF = BE (hai cạnh tương ứng)

Hay BE = CF

b) Do ∆BFC = ∆CEB (cmt)

⇒ ∠BCF = ∠CBE (hai góc tương ứng)

⇒ ∠BCK = ∠CBK

∆BKC có:

∠BCK = ∠CBK (cmt)

⇒ ∆BKC cân tại K

c) Do ∆BKC cân tại K (cmt)

⇒ BK = CK

Do ∠ABC = ∠ACB (cmt)

⇒ ∠ABK = ∠ABC - ∠CBK = ∠ACB - ∠BCK = ∠ACK

⇒ ∠FBK = ∠ECK

Xét ∆BFK và ∆CEK có:

BK = CK (cmt)

∠FBK = ∠CEK (cmt)

BF = CE (cmt)

⇒ ∆BFK = ∆CEK (c-g-c)

⇒ FK = EK (hai cạnh tương ứng)

d) Sửa đề: Chứng minh ∆BFK = ∆CEK

Xét ∆BFK và ∆CEK có:

BK = CK (cmt)

BF = CE (cmt)

FK = EK (cmt)

⇒ ∆BFK = ∆CEK (c-c-c)

2.

a) Từ (1), (2) và (3) ⇒ AF = AE

∆AEF có:

AE = AF (cmt)

⇒ ∆AEF cân tại A

b) Do ∆ABC cân tại A (gt)

⇒ ∠ABC = ∠ACB = (180⁰ - ∠BAC) : 2  (4)

Do ∆AEF cân tại A (cmt)

⇒ ∠AFE = ∠AEF = (180⁰ - ∠FAE) : 2

⇒ ∠AFE = ∠AEF = (180⁰ - ∠BAC) : 2  (5)

Từ (4) và (5) ⇒ ∠ABC = ∠AFE

Mà ∠ABC và ∠AFE là hai góc đồng vị

⇒ EF // BC

c) Xét ∆AFK và ∆AEK có:

AF = AE (cmt)

AK chung

FK = EK (cmt)

⇒ ∆AFK = ∆AEK (c-c-c)

Bình luận (0)
VL
Xem chi tiết
NM
30 tháng 9 2021 lúc 18:41

AH là đường cao tam giác ABC cân tại A nên cũng là trung tuyến

\(\Rightarrow BH=HC=\dfrac{1}{2}BC=8\)

Ta có \(\cos\widehat{B}=\dfrac{BH}{AB}=\dfrac{8}{17}\approx\cos61^0\)

Do đó \(\widehat{B}=\widehat{C}\approx61^0\left(\Delta ABC.cân.tại.A\right)\)

Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\Rightarrow\widehat{A}=180^0-2\cdot61^0=58^0\)

Ta có \(AH=\sin\widehat{B}\cdot AB=\sin61^0\cdot17\approx0,9\cdot17=15,3\)

Bình luận (0)
VL
30 tháng 9 2021 lúc 18:50

thank

 

Bình luận (0)
NQ
Xem chi tiết
TT
13 tháng 2 2016 lúc 7:15

a/Do A=70=> N+M=180-70=110 mak tam giác AMN cân tại A=> M=N=>M=N=110/2=55

b/ M=40 mak tam giác AMN cân tại A=> N=40

ta có A+M+N=180=> A=180-40-40=100

Mấy câu này dễ ợt

Bình luận (0)
VN
Xem chi tiết