Những câu hỏi liên quan
HD
Xem chi tiết
ND
Xem chi tiết
VI

Có \(\frac{a}{b}=\frac{c}{d}\) . Có \(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\) ( Tính chất dãy tỉ số bằng nhau ) . Nên :

\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}=\left(\frac{a}{b}\right)^{2012}=\left(\frac{c}{d}\right)^{2012}=\left(\frac{a+b}{c+d}\right)^{2012}\left(1\right)\)

Mà  \(\left(\frac{a}{b}\right)^{2012}=\left(\frac{c}{d}\right)^{2012}=\frac{a^{2012}}{b^{2012}}=\frac{c^{2012}}{d^{2012}}=\frac{a^{2012}+c^{2012}}{b^{2012}+d^{2012}}\left(2\right)\).( T/c dãy tỉ số bằng nhau )

Từ \(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a+b}{c+d}\right)^{2012}=\frac{a^{2012}+c^{2012}}{b^{2012}+d^{2012}}\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
NL
12 tháng 12 2021 lúc 22:22

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^{2012}=\dfrac{a^{2012}}{c^{2012}}=\dfrac{b^{2012}}{d^{2012}}=\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}\) (đpcm)

Bình luận (0)
AX
Xem chi tiết
TL
18 tháng 10 2018 lúc 21:21

Giả thiết có: abc+bca+cda+dab = a+b+c+d+\(\sqrt{2012}\)

\(\Leftrightarrow\) (abc+bca+cda+dab-a-b-c-d)2 =2012

\(\Leftrightarrow\) \(\left[\left(abc-c\right)+\left(dab-d\right)+\left(bcd-b\right)+\left(cda-a\right)\right]^2\) = 2012

\(\Leftrightarrow\) \(\left[c\left(ab-1\right)+d\left(ab-1\right)+b\left(cd-1\right)+a\left(cd-1\right)\right]^2\) = 2012

\(\Leftrightarrow\) \(\left[\left(ab-1\right)\left(c+d\right)+\left(ab-1\right)\left(a+b\right)\right]^2\) = 2012

Áp dụng BĐT Bunhia cho 2 cặp số: (ab-1 ; a+b);(cd-1 ; c+d)

Ta có: \(\left[\left(ab-1\right)\left(c+d\right)+\left(ab-1\right)\left(a+b\right)\right]^2\) \(\le\) \(\left[\left(ab-1\right)^2+\left(a+b\right)^2\right]\left[\left(cd-1\right)^2+\left(c+d\right)^2\right]\)

\(\Leftrightarrow\) 2012 \(\le\) ( a2b2-2ab+1+a2+2ab+b2) (c2d2-2cd+1+c2+2cd+d2)

\(\Leftrightarrow\) 2012\(\le\) ( a2b2 +a2+b2+1)(c2d2+c2+d2+1)

\(\Leftrightarrow\) 2012 \(\le\) (a2+1)(b2+1)(c2+1)(d2+1) (đpcm)

Bình luận (0)
YY
Xem chi tiết
NV
Xem chi tiết
VC
6 tháng 1 2018 lúc 18:57

Áp dụng BĐT cô-si, ta có 

\(a^2+\frac{1}{a^2}\ge2\sqrt{a^2.\frac{1}{a^2}}=2\)

Tương tự, ta có \(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge6\)

dấu= xảy ra <=>\(a^2=b^2=c^2=1\)

=>\(a^{2012}=b^{2012}=c^{2012}=1\Rightarrow a^{2012}+b^{2012}+c^{2012}=3\left(ĐPCM\right)\)

^_^

Bình luận (0)
TQ
1 tháng 1 2019 lúc 15:47

tự làm

Bình luận (0)
HT
Xem chi tiết
QN
Xem chi tiết
BN
Xem chi tiết
NT
29 tháng 1 2022 lúc 23:08

a: Gọi hai số cần tìm là 2k;2k+2

Theo đề, ta có:

\(\left(2k+2\right)^3-8k^3=2012\)

\(\Leftrightarrow24k^2+24k+8=2012\)

\(\Leftrightarrow24k^2+24k-2004=0\)

\(\Leftrightarrow2k^2+2k-167=0\)

=>Sai đề rồi bạn, vì phương trình này ko có nghiệm nguyên

d: \(a^3+b=14\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)=14\)

=>ab=-1

\(a^2+b^2=\left(a+b\right)^2-2ab=2^2-2\cdot\left(-1\right)=4\)

\(\left(a^3+b^3\right)\left(a^2+b^2\right)=56\)

\(\Leftrightarrow a^5+a^3b^2+a^2b^3+b^5=56\)

\(\Leftrightarrow a^5+b^5+a^2b^2\left(a+b\right)=56\)

\(\Leftrightarrow a^5+b^5=54\)

Bình luận (0)