cho a,b,c,d thỏa mãn a+b=c+d và \(a^2+b^2=c^2+d^2\)
Cmr \(a^{2012}+b^{2012}=c^{2012}+d^{2012}\)
mọi người ơi giúp mk vs
cho tỉ lệ thức a/b=c/d (b,d # 0). CMR (a-b)^2012/(c-d)^2012=a^2012+b^2012/c^2012+d^2012
Có \(\frac{a}{b}=\frac{c}{d}\) . Có \(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\) ( Tính chất dãy tỉ số bằng nhau ) . Nên :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}=\left(\frac{a}{b}\right)^{2012}=\left(\frac{c}{d}\right)^{2012}=\left(\frac{a+b}{c+d}\right)^{2012}\left(1\right)\)
Mà \(\left(\frac{a}{b}\right)^{2012}=\left(\frac{c}{d}\right)^{2012}=\frac{a^{2012}}{b^{2012}}=\frac{c^{2012}}{d^{2012}}=\frac{a^{2012}+c^{2012}}{b^{2012}+d^{2012}}\left(2\right)\).( T/c dãy tỉ số bằng nhau )
Từ \(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a+b}{c+d}\right)^{2012}=\frac{a^{2012}+c^{2012}}{b^{2012}+d^{2012}}\left(đpcm\right)\)
Cho tỉ lệ thức a/b=c/d. Chứng minh rằng:
\(\left(\dfrac{a+b}{c+d}\right)^{2012}=\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^{2012}=\dfrac{a^{2012}}{c^{2012}}=\dfrac{b^{2012}}{d^{2012}}=\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}\) (đpcm)
Cho a,b,c,d thoả mãn:
abc+bca+cda+dab = a+b+c+d+\(\sqrt{2012}\)
CMR: (a2+1)(b2+1)(c2+1)(d2+1) \(\ge\) 2012
Giả thiết có: abc+bca+cda+dab = a+b+c+d+\(\sqrt{2012}\)
\(\Leftrightarrow\) (abc+bca+cda+dab-a-b-c-d)2 =2012
\(\Leftrightarrow\) \(\left[\left(abc-c\right)+\left(dab-d\right)+\left(bcd-b\right)+\left(cda-a\right)\right]^2\) = 2012
\(\Leftrightarrow\) \(\left[c\left(ab-1\right)+d\left(ab-1\right)+b\left(cd-1\right)+a\left(cd-1\right)\right]^2\) = 2012
\(\Leftrightarrow\) \(\left[\left(ab-1\right)\left(c+d\right)+\left(ab-1\right)\left(a+b\right)\right]^2\) = 2012
Áp dụng BĐT Bunhia cho 2 cặp số: (ab-1 ; a+b);(cd-1 ; c+d)
Ta có: \(\left[\left(ab-1\right)\left(c+d\right)+\left(ab-1\right)\left(a+b\right)\right]^2\) \(\le\) \(\left[\left(ab-1\right)^2+\left(a+b\right)^2\right]\left[\left(cd-1\right)^2+\left(c+d\right)^2\right]\)
\(\Leftrightarrow\) 2012 \(\le\) ( a2b2-2ab+1+a2+2ab+b2) (c2d2-2cd+1+c2+2cd+d2)
\(\Leftrightarrow\) 2012\(\le\) ( a2b2 +a2+b2+1)(c2d2+c2+d2+1)
\(\Leftrightarrow\) 2012 \(\le\) (a2+1)(b2+1)(c2+1)(d2+1) (đpcm)
Cho 3 số thực khác 0 thỏa mãn :
abc=20123 và 20122(1/a+1/b+1/c)<a+b+c
CMR trong 3 số có một số lớn hơn 2012
Cho các số thực a, b, c thỏa mãn:
\(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=6\)
C/m \(a^{2012}+b^{2012}+c^{2012}=3\)
Áp dụng BĐT cô-si, ta có
\(a^2+\frac{1}{a^2}\ge2\sqrt{a^2.\frac{1}{a^2}}=2\)
Tương tự, ta có \(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge6\)
dấu= xảy ra <=>\(a^2=b^2=c^2=1\)
=>\(a^{2012}=b^{2012}=c^{2012}=1\Rightarrow a^{2012}+b^{2012}+c^{2012}=3\left(ĐPCM\right)\)
^_^
cho các số thực a,b,c thoả mãn a^2+b^2+c^2+1/a^2+1/b^2+1/c^2=6 chứng minh rằng a^2012+b^2012+c^2012=3
a)Tìm hai số chẵn liên tiếp mà hiệu các lập phương của hai số đó bằng 2012
b)Cho 2012 số thực khác nhau. Biết tích của 13 số bất ký trong 2012 số đó luôn là một số dương. C/m 2012 số đó đều dương
c)Cho 5 số nguyên khác không:a, b, c,d,k và abc/dk<0. Ss (bcd/ka)+(cdk/ab)+(dka/bc) và số 0
d)Cho biết tồn tại hai số thực a, b thỏa a+b=2 và a^3+b^3=14. Tìm giá trị a^5+b^5
a)Tìm hai số chẵn liên tiếp mà hiệu các lập phương của hai số đó bằng 2012
b)Cho 2012 số thực khác nhau. Biết tích của 13 số bất ký trong 2012 số đó luôn là một số dương. C/m 2012 số đó đều dương
c)Cho 5 số nguyên khác không:a, b, c,d,k và abc/dk<0. Ss (bcd/ka)+(cdk/ab)+(dka/bc) và số 0
d)Cho biết tồn tại hai số thực a, b thỏa a+b=2 và a^3+b^3=14. Tìm giá trị a^5+b^5
a: Gọi hai số cần tìm là 2k;2k+2
Theo đề, ta có:
\(\left(2k+2\right)^3-8k^3=2012\)
\(\Leftrightarrow24k^2+24k+8=2012\)
\(\Leftrightarrow24k^2+24k-2004=0\)
\(\Leftrightarrow2k^2+2k-167=0\)
=>Sai đề rồi bạn, vì phương trình này ko có nghiệm nguyên
d: \(a^3+b=14\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)=14\)
=>ab=-1
\(a^2+b^2=\left(a+b\right)^2-2ab=2^2-2\cdot\left(-1\right)=4\)
\(\left(a^3+b^3\right)\left(a^2+b^2\right)=56\)
\(\Leftrightarrow a^5+a^3b^2+a^2b^3+b^5=56\)
\(\Leftrightarrow a^5+b^5+a^2b^2\left(a+b\right)=56\)
\(\Leftrightarrow a^5+b^5=54\)