Violympic toán 8

H24

cho a,b,c,d thỏa mãn a+b=c+d và \(a^2+b^2=c^2+d^2\)

Cmr \(a^{2012}+b^{2012}=c^{2012}+d^{2012}\)

KB
9 tháng 2 2019 lúc 18:20

Ta có : \(a^2+b^2=c^2+d^2\)

\(\Leftrightarrow a^2-c^2=d^2-b^2\)

\(\Leftrightarrow\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\)

Do \(a+b=c+d\Rightarrow a-c=d-b\)

\(\Rightarrow\left(a-c\right)\left(a+c\right)=\left(a-c\right)\left(d+b\right)\)

\(\Leftrightarrow\left(a-c\right)\left(a+c-b-d\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-c=0=d-b\\a+c=b+d\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=c\\d=b\end{matrix}\right.\\a+c=b+d\end{matrix}\right.\)

Với a = c ; d = b \(\Rightarrow a^{2012}+b^{2012}=c^{2012}+d^{2012}\left(đpcm\right)\)

Với \(a+c=b+d\)

\(a+b=c+d\)

\(\Rightarrow a+c+a+b=b+d+c+d\)

\(\Rightarrow2a=2d\Rightarrow a=d\Rightarrow a^{2012}=d^{2012}\left(1\right)\)

Lại có : \(a+c=b+d\)

\(\Rightarrow b=c\Rightarrow b^{2012}=c^{2012}\left(2\right)\)

Từ ( 1 ) ; ( 2 )

\(\Rightarrow a^{2012}+b^{2012}=c^{2012}+d^{2012}\left(đpcm\right)\)

haha

Bình luận (0)

Các câu hỏi tương tự
PN
Xem chi tiết
TS
Xem chi tiết
OM
Xem chi tiết
HV
Xem chi tiết
KO
Xem chi tiết
NM
Xem chi tiết
AS
Xem chi tiết
BT
Xem chi tiết
H24
Xem chi tiết