Cho \(\Delta ABC\), M là trung điểm của BC. CMR:
\(\dfrac{AB+AC-BC}{2}< AM< \dfrac{AB+AC}{2}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho ΔABC vuông tại A, AB>AC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA a,CMR:AB=DC và AB//DC
b,CMR: ΔABC=ΔCDA từ đó suy ra AM=\(\dfrac{BC}{2}\)
c,Trên tia đối của tia AC lấy điểm E sao cho AE=AC.CMR: BE//AM
d,Tìm điều kiện của tam giác ABC để AC=\(\dfrac{BC}{2}\)
e,Gọi O là trung điểm của AB. CMR: 3 điểm E,O,D thẳng hàng
a: Xét tứ gíac ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: AB=CD và AB//CD
b: Xét ΔABC và ΔCDA có
AB=CD
BC=DA
AC chung
Do đó: ΔABC=ΔCDA
Suy ra: BC=DA
hay AM=1/2BC
c: Xét tứ giác AEBD có
AE//BD
AE=BD
Do đó; AEBD là hình bình hành
Suy ra: BE//AD
hay AM//BE
d: Để AC=BC/2 thì \(\widehat{ABC}=30^0\)
e: Ta có: ADBE là hình bình hành
nên AB cắt DE tại trung điểm của mỗi đường
=>E,O,D thẳng hàng
cho tam giác ABC có AB<AC .Gọi M là trung điểm của cạnh BC
CMR :\(\dfrac{AC-AB}{2}\)< AM <\(\dfrac{AB+AC}{2}\)\
GỢI Ý :Lấy điểm D trên tia đối MA sao cho MD=MA
Cho ΔABC vuông tại A, (AB<AC), M là trung điểm BC. CMR: AM=\(\dfrac{BC}{2}\)
cho ▲ABC, điểm M là trung điểm BC. Chứng minh rằng:
\(\dfrac{AB+AC-BC}{2}\)<AM<\(\dfrac{AB+AC}{2}\)
Bạn tự kẻ hình nhá
Trên tia đối của tia MA lấy điểm D sao cho AM=MD
Xét △ACM và △ABM có
góc BMD=góc AMC
MC=BM
AM=MD
Nên △ACM=△ABM(c.g.c)
=>AC=BD
Xét △ABD có
AB+BD>AD( theo BĐT tam giác)
Mà AC=BD
=>AB+AC>AD
Mà AM=\(\dfrac{1}{2}AD\) hay AM=2.AD
=>AM<\(\dfrac{AB+AC}{2}\)(1)
Xét △ABM, ta có
AM>AB-BM (*)
Xét △ACM có
AM>AC-CM(**)
Từ (*) và (**), ta có
2.AM>AB+AC-BM+CM (mà BM+CM=BC)
=>2AM>AB+AC-BC
Hay AM>\(\dfrac{AB+AC-BC}{2}\)(2)
Từ (1) và (2)=>\(\dfrac{AB+AC-BC}{2}< AM< \dfrac{AB+AC}{2}\)(đpcm)
Cho tam giác ABC, gọi M là trung điểm của BC. Chứng minh rằng \(\dfrac{AB+AC-BC}{2}\) < AM < \(\dfrac{AB+AC}{2}\)
Cho \(\Delta ABC\); M là trung điểm BC ; N là trung điểm AC ; P là trung điểm AB . CMR :
\(AB^2+AC^2+BC^2=\dfrac{4}{3}\left(AM^2+BN^2+CP^2\right)\)
cho tam giác ABC có AB<AC .Gọi M là trung điểm của cạnh BC
CMR :\(\dfrac{AC-AB}{2}\) < AM < \(\dfrac{AB+AC}{2}\)
GỢI Ý :Lấy điểm D trên tia đối MA sao cho MD=MA
GIÚP MIK VS MIK CẦN GẤP LẮM
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét tứ giác ANMC có
I là trung điểm của AM
I là trung điểm của CN
Do đó: ANMC là hình bình hành
Suy ra: AN//MC
hay AN//BC
c: Xét tứ giác ABMK có
I là trung điểm của BK
I là trung điểm của AM
Do đó: ABMK là hình bình hành
Suy ra: AK//BM
hay AK//BC
mà AN//BC
và AN,AK có điểm chung là A
nên A,N,K thẳng hàng
Cho ΔABC (AC > AB). M là trung điểm của BC. Gọi E điểm là đường xiên của A qua M.
a) CMR: AB+AC -BC < 2AM
b) CMR: AM < \(\dfrac{AB+AC}{2}\)
Giúp em với ạ.Em xin cảm ơn ạ!
Tam giác ABC có AB=c AC=b Gọi M là trung điểm của BC. CMR AM < \(\dfrac{b+c}{2}\)