Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho tam giác ABC có AB<AC .Gọi M là trung điểm của cạnh BC
CMR :\(\dfrac{AC-AB}{2}\) < AM < \(\dfrac{AB+AC}{2}\)
GỢI Ý :Lấy điểm D trên tia đối MA sao cho MD=MA
GIÚP MIK VS MIK CẦN GẤP LẮM
Bài 7. Cho tam giác ABC vuông tại A, AB > AC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a)CMR: AB = DC và AB // DC. b) CMR: ABC = CDA từ đó suy ra 2 BC AM . c)Trên tia đối của tia AC lấy điểm E soa cho AE = AC. CMR: BE // AM. d) Tìm điều kiện của tam giác ABC để 2 BC AC . e)Gọi O là trung điểm của AB. CMR: Ba điểm E, O, D thẳng hàng
Cho ΔABC vuông tại A, AB>AC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA
a,CMR:AB=DC và AB//DC
b,CMR: ΔABC=ΔCDAtừ đó suy ra AM=\(\dfrac{BC}{2}\)
c,Trên tia đối của tia AC lấy điểm E sao cho AE=AC.CMR: BE//AM
d,Tìm điều kiện của tam giác ABC để AC=\(\dfrac{BC}{2}\)
e,Gọi O là trung điểm của AB. CMR: 3 điểm E,O,D thẳng hàng
Cho ΔABC vuông tại A, AB>AC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA
a,Trên tia đối của tia AC lấy điểm E sao cho AE=AC.CMR: BE//AM
b,Tìm điều kiện của tam giác ABC để AC=BC/2
c,Gọi O là trung điểm của AB. CMR: 3 điểm E,O,D thẳng hàng
Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA
b. Chứng minh AC > CD
Cho tam giác ABC vuông tại A (AB > AC ) M là trung điểm BC. Trên tia đối của tia MA lấy D sao cho MA = MD.
a) CMR AB=DC; AB//DC
b) Tam giác ABC= tam giác CDA và AM= \(\frac{BC}{2}\)
c) Trên tia đối của tia AC lấy E sao cho AE = AC Chứng minh BE//AM
d) Gọi O là trung điểm của AB Chứng minh E,O,D thẳng hàng
Cho tam giác ABC vuông tại A AB lớn hơn AC M là trung điểm của BC trên tia đối của ma lấy điểm D sao cho MD = ma a Chứng minh AB = BC và AB song song bc B Chứng minh tam giác ABC bằng tam giác bda Từ đó suy ra AM = BC chia 2 trên tia đối của AC lấy điểm E sao cho ae = AC Chứng minh Be song song AM đề tìm điều kiện của tam giác ABC để AC = BC chia 2
Bài 1 :Cho tam giác ABC vuông cân tại A, D là điểm bất kỳ trên cạnh AB. Trên nửa mặt phẳng bờ AB có chứa điểm C vẽ tia Bx sao cho ABx= 135o. Đường thẳng vuông góc với DC vẽ từ D cắt tia Bx tại E.
CMR: ∆DEC vuông cân.
Bài 2:Cho tam giác ABC vuông tại A, AB > AC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a,CMR: AB = DC và AB // DC.
b,CMR: ABC = CDA từ đó suy ra .
c,Trên tia đối của tia AC lấy điểm E soa cho AE = AC. CMR: BE // AM.
d,Tìm điều kiện của tam giác ABC để .
e,Gọi O là trung điểm của AB. CMR: Ba điểm E, O, D thẳng hàng.
Bài 1: Cho tam giác ABC vuông tại A, AB > AC. M là trung điểm của BC.
Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh rằng: AB = DC và AB // DC.
b) Chứng minh rằng:
Tam giác ABC=tam giác CDA
từ đó suy ra Am=BC trên 2
c) Trên tia đối của tia AC lấy điểm E sao cho AE=AC. Chứng minh rằng:
BE// AM.
d) Tìm điều kiện của tam giác ABC để AC bằng BC trên 2
e) Gọi O là trung điểm của AB. Chứng minh rằng: Ba điểm E, O, D thẳng
hàng.