Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho ΔABC vuông tại A, AB>AC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA a,CMR:AB=DC và AB//DC
b,CMR: ΔABC=ΔCDA từ đó suy ra AM=\(\dfrac{BC}{2}\)
c,Trên tia đối của tia AC lấy điểm E sao cho AE=AC.CMR: BE//AM
d,Tìm điều kiện của tam giác ABC để AC=\(\dfrac{BC}{2}\)
e,Gọi O là trung điểm của AB. CMR: 3 điểm E,O,D thẳng hàng
Cho ΔABC vuông tại A, (AB<AC), M là trung điểm BC. CMR: AM=\(\dfrac{BC}{2}\)
Cho tam giác ABC ,M là trung điểm của BC
Chứng minh :\(\dfrac{AB+AC-BC}{2}< AM< \dfrac{AB+AC}{2}\)
Cho \(\Delta\)ABC. Gọi M, N lần lượt là trung điểm của AB, AC
CMR: MN//BC, MN=\(\dfrac{BC}{2}\)
Cho \(\Delta ABC\left(AB>AC\right)\) , M là trung điểm của BC . Đường thẳng đi qua M và vuông góc với tia phân giác của góc A tại H cắt 2 tia AB và AC lần lượt tại E và F . CMR : a) \(\dfrac{EF^2}{4}+AH^2=AE^2\)
b)\(2\widehat{BME}=\widehat{ACB}-\widehat{B}\)
c) \(BE=CF\)
d) \(AE=\dfrac{AB+AC}{2}\)
Cho \(\Delta ABC,\) trung tuyến AM. C/m a) \(\dfrac{AB+AC-BC}{2}< AM< \dfrac{AB+AC}{2}\)
b) Tổng 3 trung tuyến nhỏ hơn chu vi và lớn hơn nửa chu vi của tam giác
Cho ΔABC vuông tại A, AB>AC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA a,CMR:AB=DC và AB//DC
b,CMR: ΔABC=ΔCDA từ đó suy ra AM=BC/2
c,Trên tia đối của tia AC lấy điểm E sao cho AE=AC.CMR: BE//AM
d,Tìm điều kiện của tam giác ABC để AC=BC/2
e,Gọi O là trung điểm của AB. CMR: 3 điểm E,O,D thẳng hàng
ve hinh nha! can gap
Cho ΔABC vuông tại A, AB>AC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA a,CMR:AB=DC và AB//DC
b,CMR: ΔABC=ΔCDA từ đó suy ra AM=BC/2
c,Trên tia đối của tia AC lấy điểm E sao cho AE=AC.CMR: BE//AM
d,Tìm điều kiện của tam giác ABC để AC=BC/2
e,Gọi O là trung điểm của AB. CMR: 3 điểm E,O,D thẳng hàng
ve hinh nha! can gap
Cho \(\Delta ABC\), gọi M là trung điểm của BC. Chứng minh \(BM< \dfrac{AC+AB}{2}\)