Những câu hỏi liên quan
LA
Xem chi tiết
TM
28 tháng 5 2017 lúc 17:10

A=\(\sqrt{x^2-2x+1}+\sqrt{x^2+6x+9}=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+3\right)^2}\)=|x-1|+|x+3|=|1-x|+|x+3|

Áp dụng bđt |a|+|b|\(\ge\)|a+b| ta được: A=|1-x|+|x+3|\(\ge\)|1-x+x+3|=4

Dấu "=" xảy ra khi (1-x)(x+3)\(\ge\)0 <=> \(-3\le x\le1\)

Vậy Amin=4 khi \(-3\le x\le1\)

Bình luận (0)
HH
28 tháng 5 2017 lúc 17:07

A = \(\sqrt{x^2-2x+1}+\sqrt{x^2+6x+9}\)

  = \(\sqrt{\left(1-x\right)^2}+\sqrt{\left(x+3\right)^2}\)

 = 1 - x + x + 3

  = 4 

Bình luận (0)
TG
28 tháng 5 2017 lúc 17:09

kết quả là 

 =4

    đs...

Bình luận (0)
H24
Xem chi tiết
AH
29 tháng 5 2023 lúc 19:29

Bạn xem lại xem đã biết biểu thức đúng chưa vậy?

Bình luận (0)
H24
Xem chi tiết
NS
Xem chi tiết
NL
2 tháng 9 2021 lúc 19:49

\(P\le\sqrt{2\left(3x-5+7-3x\right)}=2\)

\(P_{max}=2\) khi \(3x-5=7-3x\Rightarrow x=2\)

\(A=2\left(x-1\right)+\dfrac{9}{x-1}+2\ge2\sqrt{\dfrac{18\left(x-1\right)}{x-1}}+2=6\sqrt{2}+2\)

\(A_{min}=6\sqrt{2}+2\) khi \(x=\dfrac{2+3\sqrt{2}}{2}\)

Bình luận (0)
PN
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
DT
1 tháng 9 2021 lúc 19:20

Ta có: \(\sqrt{x^2-2x+10}=\sqrt{x^2-2x+1+9}=\sqrt{\left(x-1\right)^2+9}\ge\sqrt{9}\ge3\)

          \(\sqrt{x^2+4x+5}=\sqrt{x^2+4x+4+1}=\sqrt{\left(x+2\right)^2+1}\ge\sqrt{1}\ge1\)

    \(\Rightarrow\)   \(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\ge1+3\ge4\)

Vậy GTNN của biểu thức là 4

Bình luận (1)
HT
Xem chi tiết
BH
5 tháng 10 2018 lúc 16:25

ké với 

Bình luận (0)
DH
5 tháng 10 2018 lúc 21:07

ĐKXĐ ....\(-1\le x\le2\)

\(A^2=.....=\left(\sqrt{\left(4-x\right)\left(x +1\right)}-\sqrt{\left(2-x\right)\left(x+2\right)}\right)^2+2\)

\(\Rightarrow A^2\ge2\)(1)

Xét hiệu \(\left(-x^2+2x+8\right)-\left(-x^2+x+2\right)=x+6>0\)(Vì \(-1\le x\le2\))

\(\Rightarrow A>0\)(2)

Từ (1) và (2) ta có: \(A\ge\sqrt{2}\)

Dấu = xảy ra khi......x=0(TM)

Vậy minA=\(\sqrt{2}\)khi \(x=0\)

Bình luận (0)
H24
Xem chi tiết
NT
27 tháng 5 2023 lúc 7:47

a: \(B=\dfrac{2x+3\sqrt{x}+9-x+3\sqrt{x}}{x-9}=\dfrac{x+9}{x-9}\)

b: \P=A:B

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}\cdot\dfrac{x-9}{x+9}=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{x+9}>=\dfrac{-1\cdot3}{9}=\dfrac{-1}{3}\)

Dấu = xảy ra khi x=0

Bình luận (0)
3P
Xem chi tiết