Tìm GTNN của biểu thức sau:
A=|x| + |8-x|
Tìm GTLN hoặc GTNN của các biểu thức sau:
a) Q = 9/2 + | 2/5 - x |
b) M = | x +2/3 | - 3/5
c) N = - | 7/4 - x | - 8
a) Ta thấy: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)
\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)
Dấu \("="\) xảy ra khi: \(\left|\dfrac{2}{5}-x\right|=0\Leftrightarrow\dfrac{2}{5}-x=0\Leftrightarrow x=\dfrac{2}{5}\)
Vậy \(Min_Q=\dfrac{9}{2}\) khi \(x=\dfrac{2}{5}\).
\(---\)
b) Ta thấy: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)
\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\forall x\)
Dấu \("="\) xảy ra khi: \(\left|x+\dfrac{2}{3}\right|=0\Leftrightarrow x+\dfrac{2}{3}=0\Leftrightarrow x=-\dfrac{2}{3}\)
Vậy \(Min_M=-\dfrac{3}{5}\) khi \(x=-\dfrac{2}{3}\).
\(---\)
c) Ta thấy: \(\left|\dfrac{7}{4}-x\right|\ge0\forall x\)
\(\Rightarrow-\left|\dfrac{7}{4}-x\right|\le0\forall x\)
\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\forall x\)
Dấu \("="\) xảy ra khi: \(\left|\dfrac{7}{4}-x\right|=0\Leftrightarrow\dfrac{7}{4}-x=0\Leftrightarrow x=\dfrac{7}{4}\)
Vậy \(Max_N=-8\) khi \(x=\dfrac{7}{4}\).
a) Ta có: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)
\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)
Dấu "=" xảy ra khi:
\(\dfrac{2}{5}-x=0\)
\(\Rightarrow x=\dfrac{2}{5}\)
Vậy: ...
b) Ta có: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)
\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\)
Dấu "=" xảy ra:
\(x+\dfrac{2}{3}=0\)
\(\Rightarrow x=-\dfrac{2}{3}\)
Vậy: ...
c) Ta có: \(-\left|\dfrac{7}{4}-x\right|\le0\forall x\)
\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\)
Dấu "=" xảy ra:
\(\dfrac{7}{4}-x=0\)
\(\Rightarrow x=\dfrac{7}{4}\)
Vậy: ...
`#\text{ID01}`
a)
`Q = 9/2 + |2/5 - x|`
Vì `|2/5 - x| \ge 0` `AA` `x`
`=> 9/2 + |2/5 - x| \ge 9/2` `AA` `x`
`=>` GTNN của Q là `9/2` khi `|2/5 - x| = 0`
`=> 2/5 - x = 0`
`=> x = 2/5`
b)
`M = |x + 2/3| - 3/5`
Vì `|x + 2/3| \ge 0` `AA` `x`
`=> |x + 2/3| - 3/5 \ge -3/5` `AA` `x`
`=>` GTNN của M là `-3/5` khi `|x + 2/3| = 0`
`=> x + 2/3 = 0`
`=> x = -2/3`
c)
`N=-|7/4 - x| - 8`
Vì `|7/4 - x| \ge 0` `AA` `x`
`=> -|7/4 - x| \le 0` `AA` `x`
`=> -|7/4 - x| - 8 \le -8` `AA` `x`
`=>` GTLN của N là `-8` khi `|7/4 - x| = 0`
`=> 7/4 - x = 0`
`=> x = 7/4`
Tìm GTNN, GTLN của biểu thức sau:
A=\(\dfrac{4x+3}{x^2+1}\)
\(A=\dfrac{4x+3}{x^2+1}\Leftrightarrow Ax^2+A=4x+3\\ \Leftrightarrow Ax^2-4x+A-3=0\)
Coi đây là PT bậc 2 ẩn x thì PT có nghiệm
\(\Leftrightarrow\Delta=16-4A\left(A-3\right)\ge0\\ \Leftrightarrow16-4A^2+12A\ge0\\ \Leftrightarrow-A^2+3A+4\ge0\\ \Leftrightarrow-1\le A\le4\)
Vậy \(A_{max}=4;A_{min}=-1\)
\(A_{max}=4\Leftrightarrow\dfrac{4x+3}{x^2+1}=4\Leftrightarrow4x^2-4x+1=0\\ \Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\\ A_{min}=-1\Leftrightarrow\dfrac{4x+3}{x^2+1}=-1\Leftrightarrow x^2+1=-4x-3\Leftrightarrow x^2+4x+4=0\\ \Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x=-2\)
1. Cho x là số thực không nhỏ hơn 2. Tìm GTNN của biểu thức sau:
A= \(\dfrac{2}{-x^2-2x+5}\)
2. Tìm GTLN của biểu thức sau:
B= \(\dfrac{-x^2-x-1}{x^2}\)
Câu 2:
ĐKXĐ: x<>0
\(B=\dfrac{-x^2-x-1}{x^2}\)
\(=-1-\dfrac{1}{x}-\dfrac{1}{x^2}\)
\(=-\left(\dfrac{1}{x^2}+\dfrac{1}{x}+1\right)\)
\(=-\left(\dfrac{1}{x^2}+2\cdot\dfrac{1}{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=-\left(\dfrac{1}{x}+\dfrac{1}{2}\right)^2-\dfrac{3}{4}< =-\dfrac{3}{4}\forall x< >0\)
Dấu '=' xảy ra khi 1/x+1/2=0
=>1/x=-1/2
=>x=-2
Cho các biểu thức sau:
A = \(\dfrac{\sqrt{x}+8}{x+7}\) và B = \(\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{8\sqrt{x}+24}{x-9}\) với \(x\ge0;x\ne4\)
a) Chứng minh B = \(\dfrac{\sqrt{x}+8}{\sqrt{x}-3}\)
b) Tìm GTNN của P = \(\sqrt{\dfrac{B}{A}}\)
a) \(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{8\sqrt{x}+24}{x-9}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)+8\sqrt{x}+24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x+3\sqrt{x}+8\sqrt{x}+24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+8\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+8}{\sqrt{x}-3}\) (đpcm)
b) Mình không biết làm bạn thông cảm.
Tìm GTNN của các biểu thức sau:
a)A=x^2+y^2+x-y-2xy+1
b)B=\(\dfrac{7}{10x-x^2-30}\)
\(A=\left(x-y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(A_{min}=\dfrac{3}{4}\) khi \(x-y+\dfrac{1}{2}=0\)
\(B=\dfrac{7}{-\left(x-5\right)^2-5}\ge-\dfrac{7}{5}\)
\(B_{min}=-\dfrac{7}{5}\) khi \(x=5\)
Tìm GTNN của các biểu thức sau:
a,A= x^2+6x+11
b,B= x^2+3x-5
c,C= 9x^2-12x+2021
\(A=\left(x+3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=-3\\ B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{29}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{29}{4}\ge-\dfrac{29}{4}\\ B_{min}=-\dfrac{29}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ C=\left(9x^2-12x+4\right)+2017=\left(3x-2\right)^2+2017\ge2017\\ C_{min}=2017\Leftrightarrow x=\dfrac{2}{3}\)
Cho các biểu thức sau:
A = \(\dfrac{x+\sqrt{x}+10}{x-9}-\dfrac{1}{\sqrt{x}-3}\) và B = \(\dfrac{1}{\sqrt{x}-3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức \(M=\dfrac{A}{B}\)
b) Tìm GTNN của biểu thức M
a: M=A:B
\(=\dfrac{x+\sqrt{x}+10-\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{1}=\dfrac{x+7}{\sqrt{x}+3}\)
b: \(M=\dfrac{x-9+16}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}\)
=>\(M=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)
Dấu = xảy ra khi (căn x+3)^2=16
=>căn x+3=4
=>x=1
Tìm GTNN hoặc GTLN của các biểu thức sau:
a) 2x2 - x + 1
b) 5x - x2 + 4
c) x2 + 5y2 - 2xy + 4y + 3
a) \(2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{4}\)
b) \(5x-x^2+4=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\)
\(ĐTXR\Leftrightarrow x=\dfrac{5}{2}\)
c) \(x^2+5y^2-2xy+4y+3=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
\(ĐTXR\Leftrightarrow\)\(x=y=-\dfrac{1}{2}\)
b: ta có: \(-x^2+5x+4\)
\(=-\left(x^2-5x-4\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{41}{4}\right)\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
Bài 2: Tìm GTNN của các biểu thức sau:
a, \(A=x^2-3x+5\)
b, \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
B=\(4x^2-4x+1+x^2+4x+4=5x^2+5\)
\(=5\left(x^2+1\right)\)
vì\(x^2+1\ge1\forall x\)
\(\Leftrightarrow B\ge5\forall x\)
dấu'=' xảy ra \(\Leftrightarrow x^2+1=0\Leftrightarrow x=0\)
vậy B đạt GTNN =5 khi x=0
Bài 2:
a) Ta có: \(A=x^2-3x+5\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)
Ta có: \(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{3}{2}=0\)
hay \(x=\dfrac{3}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-3x+5\) là \(\dfrac{11}{4}\) khi \(x=\dfrac{3}{2}\)
Cho các biểu thức sau:
A = \(\dfrac{x+3}{\sqrt{x}+1}\) và B = \(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{2\sqrt{x}}{1-x}\) với \(x\ge0;x\ne1\)
a) Rút gọn các biểu thức B
b) Cho \(P=B:A\). Với \(x>1\), tìm GTNN của biểu thức \(\dfrac{1}{P}\)
a.
\(B=\dfrac{\sqrt{x}+1+\sqrt{x}\left(\sqrt{x}-1\right)+2\sqrt{x}}{1-x}=\dfrac{\sqrt{x}+1+x-\sqrt{x}+2\sqrt{x}}{1-x}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b.
\(P=\dfrac{B}{A}=\dfrac{x+3}{\sqrt{x}+1}:\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\left(x+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{x+3}{\sqrt{x}-1}=\dfrac{x-1+4}{\sqrt{x}-1}\)
\(=\sqrt{x}+1+\dfrac{4}{\sqrt{x}-1}\)\(=\sqrt{x}-1+\dfrac{4}{\sqrt{x}-1}+2\)
Theo BĐT AM - GM ta có: \(\sqrt{x}-1+\dfrac{4}{\sqrt{x}-1}\ge2\sqrt{\left(\sqrt{x}-1\right)\dfrac{4}{\sqrt{x}-1}}=4\)
\(\Rightarrow\dfrac{1}{P}\ge6\Rightarrow Min_{\dfrac{1}{P}}=6\)
Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{x}-1\right)^2=4\Rightarrow x=9\) (loại trường hợp \(\sqrt{x}-1=-2\))
Vậy GTNN của biểu thức \(\dfrac{1}{P}=6\) khi x = 9.