Violympic toán 8

TN

Bài 2: Tìm GTNN của các biểu thức sau:

a, \(A=x^2-3x+5\)

b, \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

TH
6 tháng 1 2021 lúc 20:59

B=\(4x^2-4x+1+x^2+4x+4=5x^2+5\)

                                                  \(=5\left(x^2+1\right)\)

\(x^2+1\ge1\forall x\)

\(\Leftrightarrow B\ge5\forall x\)

dấu'=' xảy ra \(\Leftrightarrow x^2+1=0\Leftrightarrow x=0\)

vậy B đạt GTNN =5 khi x=0

Bình luận (0)
NT
6 tháng 1 2021 lúc 23:56

Bài 2: 

a) Ta có: \(A=x^2-3x+5\)

\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)

Ta có: \(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\dfrac{3}{2}=0\)

hay \(x=\dfrac{3}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-3x+5\) là \(\dfrac{11}{4}\) khi \(x=\dfrac{3}{2}\)

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
DC
Xem chi tiết
KA
Xem chi tiết
YC
Xem chi tiết
NH
Xem chi tiết
TT
Xem chi tiết
NH
Xem chi tiết
MN
Xem chi tiết
NS
Xem chi tiết