Chứng tỏ rằng tổng sau chia hết cho 15 :
2 + 22+ 23 + ... + 299 + 2100
Chứng tỏ rằng:
a, 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 chia hết cho 31
b, 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
a, Ta có:
2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100
= 2 + 2 2 + 2 3 + 2 4 + 2 5 +...+ 2 96 + 2 97 + 2 98 + 2 99 + 2 100
= 2. 1 + 2 + 2 2 + 2 3 + 2 4 +...+ 2 96 1 + 2 + 2 2 + 2 3 + 2 4
= 2 . 31 + 2 6 . 31 + . . . + 2 96 . 31
= 2 + 2 6 + . . . + 2 96 . 31 chia hết cho 31
b, Ta có:
5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 1 + 5 + 5 3 1 + 5 + 5 5 1 + 5 + . . . + 5 149 1 + 5
= 5 . 6 + 5 3 . 6 + 5 5 . 6 + . . . + 5 149 . 6
= ( 5 + 5 3 + 5 5 + . . . + 5 149 ) . 6 chia hết cho 6
Ta lại có:
5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 +...+ 5 145 + 5 146 + 5 147 + 5 148 + 5 149 + 5 150 (có đúng 25 nhóm)
= [ ( 5 + 5 4 ) + ( 5 2 + 5 5 ) + ( 5 3 + 5 6 ) ] + ... + [ 5 145 + 5 148 ) + ( 5 146 + 5 149 ) + ( 5 147 + 5 150 ]
= [ 5 ( 1 + 5 3 ) + 5 2 ( 1 + 5 3 ) + 5 3 ( 1 + 5 3 ) ] + ... + [ 5 145 1 + 5 3 ) + 5 146 ( 1 + 5 3 ) + 5 147 ( 1 + 5 3 ]
= ( 5 . 126 + 5 2 . 126 + 5 3 . 126 ) + ... + ( 5 145 . 126 + 5 146 . 126 + 5 147 . 126 )
= ( 5 + 5 2 + 5 3 ) . 126 + ( 5 7 + 5 8 + 5 9 ) . 126 + ... + ( 5 145 + 5 146 + 5 147 ) . 126
= 126.[ ( 5 + 5 2 + 5 3 ) + ( 5 7 + 5 8 + 5 9 ) + ... + ( 5 145 + 5 146 + 5 147 ) ] chia hết cho 126.
Vậy 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
=1872643+8712648-127649817
=9873264+98293:8726
chứng tỏ rằng:
a) 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 chia hết cho 31
b) 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
Chứng tỏ rằng A = 2 + 22 + 23 + …+ 2100 chia hết cho 6.
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\\ A=\left(2+2^2\right)\left(1+2^2+...+2^{98}\right)\\ A=6\left(1+2^2+...+2^{98}\right)⋮6\)
chứng tỏ rằng : A = 2 + 22+23+24+......+299 + 91 CHIA HẾT cho 7
Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}+91\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)+91\)
\(=2\cdot\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)+91\)
\(=7\cdot\left(1+2^4+...+2^{97}\right)+7\cdot13\)
\(=7\cdot\left(1+2^4+...+2^{97}+13\right)⋮7\)(đpcm)
chứng tỏ rằng : A = 2 + 22+23+24+......+299 + 91 CHIA HẾT cho 7
Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)\)
\(=2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\cdot\left(2+2^4+...+2^{97}\right)\)
\(=7\cdot\left(2+2^4+...+2^{97}\right)⋮7\)(đpcm)
1. Chứng minh rằng
A = 2 + 22 + 23 + ... + 2100 chia hết cho 2,3 và 30
2. Chứng minh rằng
B = 3 + 32 + 33 + ... + 32022 chia hết cho 12 và 15
1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{97}\right)\)
\(=30\left(1+2^4+...+2^{96}\right)⋮30\)
2:
\(B=3+3^2+3^3+...+3^{2022}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)
\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)
\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)
chứng tỏ A chia hết cho 6 với:
A=2+22+23+...+2100
\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(=6+2^2.6+...+2^{98}.6\)
\(=6\left(1+2^2+...+2^{98}\right)⋮6\)
\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(=\left(2+2^2\right)+2^2\left(2+2\right)+...+2^{98}\left(2+2^2\right)\)
\(=\left(2+2^2\right)\left(1+2^2+...+2^{98}\right)\)
\(=6\left(1+2^2+...+2^{98}\right)\)⋮6
⇒ A⋮6
chứng tỏ A chia hết cho 6 với A= 2+22+23+24+...+2100
\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(=6+2^2.6+...+2^{98}.6=6\left(1+2^2+...+2^{98}\right)⋮6\)
Chứng tỏ A chia hết cho 6 với A = 2 + 22+23+24+...+2100
\(A=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(=6+6.2^2+...+6.2^{98}\)
\(=6\left(1+2^2+...+2^{98}\right)⋮6\)
Chứng tỏ A chia hết cho 6 với A = 2 + 22 + 23 + 24 + … + 2100
\(A=2+2^2+2^3+2^4+...+2^{100}\)
\(=2\cdot3+2^3\cdot3+...+2^{99}\cdot3\)
\(=6\left(1+2^2+...+2^{98}\right)⋮6\)