Chương II : Số nguyên

VN

1. Chứng minh rằng 
A = 2 + 22 + 23 + ... + 2100 chia hết cho 2,3 và 30
2. Chứng minh rằng
B = 3 + 32 + 33 + ... + 32022 chia hết cho 12 và 15

NT
13 tháng 11 2023 lúc 18:20

1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{97}\right)\)

\(=30\left(1+2^4+...+2^{96}\right)⋮30\)

2:

\(B=3+3^2+3^3+...+3^{2022}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)

\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)

\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)

 

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
TT
Xem chi tiết
HV
Xem chi tiết
KH
Xem chi tiết
NH
Xem chi tiết
TD
Xem chi tiết
TD
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết