Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
CW
Xem chi tiết
DH
Xem chi tiết
HT
Xem chi tiết
NT
20 tháng 6 2023 lúc 7:58

a: ĐKXĐ: x>1; x<>2

b: \(P=\left(\dfrac{\sqrt{x}+\sqrt{x-1}}{x-x+1}-\sqrt{x-1}-\sqrt{2}\right)\cdot\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\)

\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{\sqrt{x}-\sqrt{2}}{\sqrt{x}\left(2-\sqrt{x}\right)}=\dfrac{-\sqrt{x}+\sqrt{2}}{\sqrt{x}}\)

c: Khi x=3+2căn 2 thì

P=(-căn 2-1+căn 2)/(căn 2+1)=căn 2-1

Bình luận (0)
DN
Xem chi tiết
DN
Xem chi tiết
TB
20 tháng 5 2017 lúc 9:14

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{y}=b\end{matrix}\right.\), ta có:

\(A=\left[\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\times\dfrac{2}{a+b}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right]\)\(\times\dfrac{a^3+ab^2+a^2b+b^3}{ab^3+a^3b}\)

\(=\left(\dfrac{b+a}{ab}\times\dfrac{2}{a+b}+\dfrac{b^2+a^2}{a^2b^2}\right)\)\(\times\dfrac{a^2\left(a+b\right)+b^2\left(a+b\right)}{ab\left(a^2+b^2\right)}\)

\(=\dfrac{2ab+b^2+a^2}{a^2b^2}\times\dfrac{\left(a+b\right)\left(a^2+b^2\right)}{ab\left(b^2+a^2\right)}\)

\(=\dfrac{\left(a+b\right)^3}{a^3b^3}\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{\left(xy\right)^3}}\)

Bình luận (0)
NP
Xem chi tiết
NT
23 tháng 8 2021 lúc 21:13

1: Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

Bình luận (0)
NT
23 tháng 8 2021 lúc 22:30

2: Ta có: \(A=\left(\dfrac{x+2\sqrt{x}}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)

\(=\dfrac{x+2\sqrt{x}-x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-\sqrt{x}-2}{\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{1}{x-1}\)

3: Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

Bình luận (0)
H24
Xem chi tiết
H24
14 tháng 5 2021 lúc 10:06

A=\(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
`=((x-2+\sqrtx)/(x+2\sqrtx).({\sqrt{x}+1}{\sqrt{x}-1})`
`=((\sqrtx-1)(\sqrtx+2))/(\sqrtx(\sqrtx+2)).({\sqrt{x}+1}{\sqrt{x}-1})`
`=(\sqrtx+1)/\sqrtx`

Bình luận (0)
H24
14 tháng 5 2021 lúc 10:08

A=\(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
`=((x-2+\sqrtx)/(x+2\sqrtx).({\sqrt{x}+1}/{\sqrt{x}-1})`
`=((\sqrtx-1)(\sqrtx+2))/(\sqrtx(\sqrtx+2)).({\sqrt{x}+1}/{\sqrt{x}-1})`
`=(\sqrtx+1)/\sqrtx`

Bình luận (0)
NT
14 tháng 5 2021 lúc 10:28

a) Ta có: \(A=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{x+2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

Bình luận (0)
TD
Xem chi tiết
NH
1 tháng 5 2022 lúc 17:13

1, vt : \(\left(1-\dfrac{5+\sqrt{2}}{\sqrt{2}+1}\right).\sqrt{3+2\sqrt{2}}\)

=\(\dfrac{\sqrt{2}+1-5-\sqrt{2}}{\sqrt{2}+1}.\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}+1}\)

=\(\dfrac{-4}{\sqrt{2}+1}.\sqrt{\left(\sqrt{2}+1\right)^2}\)

=\(\dfrac{-4\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)

=-4

2, A=\(\left(\dfrac{\sqrt{x}}{x+\sqrt{x}}-\dfrac{1}{\sqrt{x}-1}\right)\div\dfrac{2}{x+\sqrt{x}-2}\)

=\(\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{2}\)

=\(\left(\dfrac{x-\sqrt{x}-x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2}\)

=\(\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{2}\)

=\(\dfrac{-\sqrt{x}-2}{\sqrt{x}+1}\)

Bình luận (0)
DH
1 tháng 5 2022 lúc 20:40

1. (1−5+√2√2+1)⋅√3+2√2=−4√2+1√(√2+1)2=−4(1−5+22+1)⋅3+22=−42+1(2+1)2=−4.

2. Với x>0;x≠1x>0;x≠1 ta có:
A=(√xx+√x−1√x−1):2x+√x−2A=(xx+x−1x−1):2x+x−2
⇔A=(√x√x(√x+1)−1√x−1):2(√x−1)(√x+2)⇔A=(xx(x+1)−1x−1):2(x−1)(x+2)
⇔A=−2(√x−1)(√x+1)⋅(√x−1)(√x+2)2⇔A=−2(x−1)(x+1)⋅(x−1)(x+2)2
⇔A=−(√x+2)√x+1⇔A=−(x+2)x+1. Vạyy với x>0;x≠1x>0;x≠1, ta có A=−(√x+2)√x+1A=−(x+2)x+1.

Bình luận (0)
HV
Xem chi tiết