Chương III - Hệ hai phương trình bậc nhất hai ẩn

H24

Cho biêu thức A=\(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

a. RG A

H24
14 tháng 5 2021 lúc 10:06

A=\(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
`=((x-2+\sqrtx)/(x+2\sqrtx).({\sqrt{x}+1}{\sqrt{x}-1})`
`=((\sqrtx-1)(\sqrtx+2))/(\sqrtx(\sqrtx+2)).({\sqrt{x}+1}{\sqrt{x}-1})`
`=(\sqrtx+1)/\sqrtx`

Bình luận (0)
H24
14 tháng 5 2021 lúc 10:08

A=\(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
`=((x-2+\sqrtx)/(x+2\sqrtx).({\sqrt{x}+1}/{\sqrt{x}-1})`
`=((\sqrtx-1)(\sqrtx+2))/(\sqrtx(\sqrtx+2)).({\sqrt{x}+1}/{\sqrt{x}-1})`
`=(\sqrtx+1)/\sqrtx`

Bình luận (0)
NT
14 tháng 5 2021 lúc 10:28

a) Ta có: \(A=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{x+2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
TL
Xem chi tiết
EC
Xem chi tiết
LT
Xem chi tiết
DN
Xem chi tiết
NV
Xem chi tiết
DN
Xem chi tiết
NT
Xem chi tiết
PA
Xem chi tiết