Những câu hỏi liên quan
H24
Xem chi tiết
H9
24 tháng 9 2023 lúc 17:31

a) \(\sqrt{1-8x+16x^2}=\dfrac{1}{3}\)

\(\Leftrightarrow\sqrt{1^2-2\cdot4x\cdot1+\left(4x\right)^2}=\dfrac{1}{3}\)

\(\Leftrightarrow\sqrt{\left(4x-1\right)^2}=\dfrac{1}{3}\)

\(\Leftrightarrow\left|4x-1\right|=\dfrac{1}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-1=\dfrac{1}{3}\left(ĐK:x\ge\dfrac{1}{4}\right)\\4x-1=\dfrac{1}{3}\left(ĐK:x< \dfrac{1}{4}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{4}{3}\\4x=\dfrac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(tm\right)\\x=\dfrac{1}{6}\left(tm\right)\end{matrix}\right.\)

b) \(\sqrt{16x-32}+\sqrt{25x-50}=18+\sqrt{9x-18}\) (ĐK: \(x\ge2\)

\(\Leftrightarrow\sqrt{16\left(x-2\right)}+\sqrt{25\left(x-2\right)}=18+\sqrt{9\left(x-2\right)}\)

\(\Leftrightarrow4\sqrt{x-2}+5\sqrt{x-2}=18+3\sqrt{x-2}\)

\(\Leftrightarrow6\sqrt{x-2}=18\)

\(\Leftrightarrow\sqrt{x-2}=3\)

\(\Leftrightarrow x-2=9\)

\(\Leftrightarrow x=9+2\)

\(\Leftrightarrow x=11\left(tm\right)\)

Bình luận (0)
KN
Xem chi tiết
H9
24 tháng 9 2023 lúc 10:10

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)

Bình luận (0)
PG
Xem chi tiết
H24
31 tháng 10 2017 lúc 5:43

\(\sqrt{16x+16}+\sqrt{9x+9}-\sqrt{25x+25}+2\sqrt{x+1}=8\)

\(\Rightarrow4\sqrt{x+1}+3\sqrt{x+1}-5\sqrt{x+1}+2\sqrt{x+1}=8\)

\(\Rightarrow\sqrt{x+1}\left(4+3-5+2\right)=8\)

\(\Rightarrow4\sqrt{x+1}=8\)

\(\Rightarrow\sqrt{x+1}=2\)

\(\Rightarrow x+1=4\)

\(\Rightarrow\)\(x=3\)

Bình luận (0)
ZY
31 tháng 10 2017 lúc 5:49

\(\sqrt{16x+16}\) + \(\sqrt{9x+9}\) - \(\sqrt{25x+25}\) + 2\(\sqrt{x+1}\) = 8 ( x\(\ge\) -1)

<=> 4\(\sqrt{x+1}\) + 3\(\sqrt{x+1}\) - 5\(\sqrt{x+1}\) + 2\(\sqrt{x+1}\) = 8

<=> 4\(\sqrt{x+1}\) = 8

<=> \(\sqrt{x+1}\) = 2

<=> x + 1 =4

<=> x=3 (TM)

Bình luận (0)
DD
7 tháng 11 2017 lúc 21:26

ta có:

\(\sqrt{16x+16}+\sqrt{9x+9}-\sqrt{25x+25}+2\sqrt{x+1}=8\)

=> \(4\cdot\sqrt{x+1}+3\sqrt{x+1}-5\sqrt{x+1}+2\sqrt{x+1}=8\)

=>\(\sqrt{x+1}\cdot\left(4+3-5+2\right)=8\)

=>\(4\sqrt{x+1}=8\)

=> \(\sqrt{x+1}=2\)

=>x+1=3

=> x=2

Bình luận (0)
PL
Xem chi tiết
NT
12 tháng 8 2021 lúc 21:04

Ta có: \(\sqrt{25x-125}-3\cdot\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=6\)

\(\Leftrightarrow5\sqrt{x-5}-3\cdot\dfrac{\sqrt{x-5}}{3}-\dfrac{1}{3}\cdot3\sqrt{x-5}=6\)

\(\Leftrightarrow3\sqrt{x-5}=6\)

\(\Leftrightarrow x-5=4\)

hay x=9

Bình luận (0)
BT
Xem chi tiết
NT
16 tháng 8 2023 lúc 21:55

\(\dfrac{1}{5}\sqrt[]{25x+50}-5\sqrt[]{x+2}+\sqrt[]{9x+18}+9=0\)

\(\Leftrightarrow\dfrac{1}{5}\sqrt[]{25\left(x+2\right)}-5\sqrt[]{x+2}+\sqrt[]{9\left(x+2\right)}+9=0\)

\(\Leftrightarrow\dfrac{1}{5}.5\sqrt[]{x+2}-5\sqrt[]{x+2}+3\sqrt[]{x+2}+9=0\)

\(\Leftrightarrow\sqrt[]{x+2}-5\sqrt[]{x+2}+3\sqrt[]{x+2}+9=0\)

\(\Leftrightarrow\sqrt[]{x+2}\left(1-5+3\right)+9=0\)

\(\Leftrightarrow-\sqrt[]{x+2}+9=0\)

\(\Leftrightarrow\sqrt[]{x+2}=9\)

\(\Leftrightarrow x+2=81\)

\(\Leftrightarrow x=79\)

Bình luận (0)
AQ
Xem chi tiết
AH
30 tháng 7 2021 lúc 16:55

a. 

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 6\sqrt{2x}-4\sqrt{2x}+5\sqrt{2x}=21$
$\Leftrightarrow 7\sqrt{2x}=21$

$\Leftrightarrow \sqrt{2x}=3$

$\Leftrightarrow 2x=9$

$\Leftrightarrow x=\frac{9}{2}$ (tm)

b.

ĐKXĐ: $x\geq -2$

PT $\Leftrightarrow \sqrt{25(x+2)}+3\sqrt{4(x+2)}-2\sqrt{16(x+2)}=15$

$\Leftrightarrow 5\sqrt{x+2}+6\sqrt{x+2}-8\sqrt{x+2}=15$

$\Leftrightarrow 3\sqrt{x+2}=15$

$\Leftrightarrow \sqrt{x+2}=5$

$\Leftrightarrow x+2=25$

$\Leftrightarrow x=23$ (tm)

 

Bình luận (0)
AH
30 tháng 7 2021 lúc 16:57

c.

$\sqrt{(x-2)^2}=12$

$\Leftrightarrow |x-2|=12$

$\Leftrightarrow x-2=12$ hoặc $x-2=-12$

$\Leftrightarrow x=14$ hoặc $x=-10$

e.

PT $\Leftrightarrow |2x-1|-x=3$

Nếu $x\geq \frac{1}{2}$ thì $2x-1-x=3$

$\Leftrightarrow x=4$ (tm)

Nếu $x< \frac{1}{2}$ thì $1-2x-x=3$

$\Leftrightarrow x=\frac{-2}{3}$ (tm)

 

Bình luận (0)
AH
30 tháng 7 2021 lúc 17:00

f.

ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{3(x-2)}-(x-2)=0$

$\Leftrightarrow \sqrt{x-2}(\sqrt{3}-\sqrt{x-2})=0$

$\Leftrightarrow \sqrt{x-2}=0$ hoặc $\sqrt{3}-\sqrt{x-2}=0$

$\Leftrightarrow x=2$ hoặc $x=5$ (tm)

h. ĐKXĐ: $x\leq \frac{3}{2}$

PT $\Leftrightarrow \sqrt{3-2x}=x+2$

\(\Rightarrow \left\{\begin{matrix} x+2\geq 0\\ 3-2x=(x+2)^2=x^2+4x+4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ x^2+6x+1=0\end{matrix}\right.\)

\(\Leftrightarrow x=-3+2\sqrt{2}\) (tm)

Vậy.......

Bình luận (0)
H24
Xem chi tiết
NL
3 tháng 1 2024 lúc 21:02

ĐKXĐ: \(x\ge-1\)

\(\sqrt{25\left(x+1\right)}-\sqrt{16\left(x+1\right)}+\sqrt{9\left(x+1\right)}-\sqrt{4\left(x+1\right)}+\sqrt{x+1}=27\)

\(\Leftrightarrow5\sqrt{x+1}-4\sqrt{x+1}+3\sqrt{x+1}-2\sqrt{x+1}+\sqrt{x+1}=27\)

\(\Leftrightarrow3\sqrt{x+1}=27\)

\(\Leftrightarrow\sqrt{x+1}=9\)

\(\Rightarrow x+1=81\)

\(\Rightarrow x=80\) (thỏa mãn)

Bình luận (0)
LG
Xem chi tiết
H24
28 tháng 6 2021 lúc 20:32

a)ĐK:\(\begin{cases}25x^2-9 \ge 0\\5x+3 \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}(5x-3)(5x+3) \ge 0\\5x+3 \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}\left[ \begin{array}{l}x\ge \dfrac35\\x \le -\dfrac35\end{array} \right.\\\end{cases}\)

`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x \ge \dfrac35\end{array} \right.\)

`pt<=>\sqrt{5x+3}(\sqrt{5x-3}-2)=0`

`<=>` \(\left[ \begin{array}{l}5x+3=0\\\sqrt{5x-3}=2\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\5x-3=4\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x=7/5\end{array} \right.\) 

`b)sqrt{x-3}/sqrt{2x+1}=2`

ĐK:\(\begin{cases}x-3 \ge 0\\2x+1>0\\\end{cases}\)

`<=>x>=3`

`pt<=>sqrt{x-3}=2sqrt{2x+1}`

`<=>x-3=8x+4`

`<=>7x=7`

`<=>x=1(l)`

`c)sqrt{x^2-2x+1}+sqrt{x^2-4x+4}=3`

`<=>sqrt{(x-1)^2}+sqrt{(x-2)^2}=3`

`<=>|x-1|+|x-2|=3`

`**x>=2`

`pt<=>x-1+x-2=3`

`<=>2x=6`

`<=>x=3(tm)`

`**x<=1`

`pt<=>1-x+2-x=3`

`<=>3-x=3`

`<=>x=0(tm)`

`**1<=x<=2`

`pt<=>x-1+2-x=3`

`<=>=-1=3` vô lý

Vậy `S={0,3}`

Bình luận (0)
BB
Xem chi tiết
NM
27 tháng 9 2021 lúc 15:33

\(BPT\Leftrightarrow x\sqrt[3]{25x\left(2x^2+9\right)}\le4x^2+3\\ \Leftrightarrow\sqrt[3]{25x^4\left(2x^2+9\right)}\le4x^2+3\left(1\right)\)

Áp dụng BĐT cosi:

\(\sqrt[3]{5x^2\cdot5x^2\left(2x^2+9\right)}\le\dfrac{5x^2+5x^2+2x^2+9}{3}=\dfrac{12x^2+9}{3}=4x^2+3\)

Vậy \(\left(1\right)\) luôn đúng

Dấu \("="\Leftrightarrow5x^2=2x^2+9\Leftrightarrow x^2=3\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)

Bình luận (0)