Tìm x, biết: ( 72x2 - 18x + 1)( 12x2 - 7x + 1)
Tìm x biết: ( 72x2 -18x + 1)( 12x2 - 7x + 1) = 5
Với mỗi phương trình sau, đã biết một nghiệm (ghi kèm theo), hãy tìm nghiệm kia:
a ) 12 x 2 − 8 x + 1 = 0 ; x 1 = 1 2 b ) 2 x 2 − 7 x − 39 = 0 ; x 1 = − 3 c ) x 2 + x − 2 + 2 = 0 ; x 1 = − 2 d ) x 2 − 2 m x + m − 1 = 0 ; x 1 = 2
Theo định lý Vi-et ta có: phương trình a x 2 + b x + c = 0 có hai nghiệm x 1 ; x 2 thì:
Ta sử dụng một trong hai biểu thức trên để tìm nghiệm còn lại.
Ở bài giải dưới đây ta sẽ sử dụng điều kiện:
(Các bạn có thể làm cách 2 sử dụng điều kiện ).
d) x 2 - 2 m x + m - 1 = 0 ( 1 )
Vì x 1 = 2 là một nghiệm của pt (1) nên:
2 2 - 2 m . 2 + m - 1 = 0
⇔ 4- 4 m+ m – 1 = 0
⇔ 3- 3m = 0
⇔ m = 1
Khi m = 1 ta có: x 1 . x 2 = m - 1 (hệ thức Vi-ét)
⇔ 2 . x 2 = 0 ( v ì x 1 = 2 và m = 1)
⇔ x 2 = 0
tìm x biết (72x^2-18x+1)(12x^2-7x+10=5
Tìm x biết ( 2 x 4 – 3 x 3 + x 2 ) : - 1 2 x 2 + 4 ( x – 1 ) 2 = 0
A. x = -1
B. x = 2
C. x = 1
D. x = 0
Ta có
( 2 x 4 – 3 x 3 + x 2 ) : - 1 2 x 2 + 4 ( x – 1 ) 2 = 0 ⇔ 2 x 4 : ( - 1 2 x 2 ) - 3 x 3 : ( - 1 2 x 2 ) + x 2 : ( - 1 2 x 2 ) + 4 ( x 2 - 2 x + 1 ) = 0 ⇔ - 4 x 2 + 6 x – 2 + 4 x 2 – 8 x + 4 = 0
ó -2x + 2 = 0
ó x = 1
Đáp án cần chọn là: C
a. (2x⁵-5x³+x²+3x-1):(x²-1) b. (5x⁵-2x⁴-9x³+7x²-18x-3):(x²-3)
a: \(=\dfrac{2x^5-2x^3-3x^3+3x+x^2-1}{x^2-1}\)
\(=2x^3-3x+1\)
Tìm nguyên hàm của hàm số f ( x ) = 7 x + 1 8 x .
A. ∫ f x d x = 7 ln 7 8 . 7 8 - x + C
B. ∫ f x d x = 8 ln 7 8 . 7 8 - x + C
C. ∫ f x d x = 7 ln 7 8 . 7 8 x + C
D. ∫ f x d x = 8 ln 7 8 . 7 8 x + C
tìm x biết a) ( x + 3 )2 - ( 2x + 1 ).( x+3 ) = 0 ; b) x3 - 12x2 + 36x = 0
\(a,\Leftrightarrow\left(x+3\right)\left(x+3-2x-1\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ b,\Leftrightarrow x\left(x^2-12x+36\right)=0\\ \Leftrightarrow x\left(x-6\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
a, (x+3)2 - ( 2x + 1 ).( x+3)=0 b, x3-12x2+36x =0
=> (x+3).(x+3-2x-1) => x(x2-12x+36) = 0
=>(x+3).(-x+2) => x(x-6)2 = 0
=> x+3=0 <=> x=-3 => x=0 <=> x=0
-x+2=0 <=> x=-2 x-6= 0 <=> x=6
Bài 1. (2,0 điểm) Cho đa thức A(x) = –11x^5 + 4x – 12x2 + 11x^5+ 13x^2– 7x + 2.
a) Thu gọn, sắp xếp đa thức A(x) theo số mũ giảm dần của biến rồi tìm bậc, hệ số cao nhất của đa thức.
A(x)= (11x5 - 11x5) + (13x2 - 12x2) - (7x - 4x) + 2 = x2 - 3x + 2
Bậc đa thức: Đa thức bậc 2
Hệ số bậc cao nhất (ít ai hỏi hệ số cao nhất lắm): 1
a) \(A\left(x\right)=-11x^5+4x-12x^2+11x^5+13x^2-7x+2\)
\(=x^2-3x+2\)
Đa thức \(A\left(x\right)\) có bậc là \(2\), hệ số cao nhất của đa thức là \(1\)
a) \(-11x^5+4x-12x^2+11x^5+13x^2-7x+2\)
\(=\left(-11x^5+11x^5\right)-\left(12x^2-13x^2\right)+\left(4x-7x\right)+2\)
\(=-\left(-x^2\right)+\left(-3x\right)+2\)
\(=x^2-3x+2\)
Vậy bậc của đa thức là 2
Hệ số cao nhất là 1
Phân tích đa thúc thành nhân tử : 2x3 -12x2 + 18x
\(2x^3-12x^2+18x=2x\left(x^2-6x+9\right)=2x\left(x-3\right)^2\)
\(=2x\left(x^2-6x+9\right)=2x\left(x-3\right)^2\)
2x3- 12x2 + 18x = 2x (x2 - 6x + 9 ) = 2x ( x - 3 )2