tìm GTLN,GTNN
\(\dfrac{2x+1}{x^2+2}\)
\(\dfrac{1}{2x-x^2-4}\) tìm GTLN/ GTNN
\(\dfrac{3x^2+14}{x^2+4}\)
\(\dfrac{2x+1}{x^2+2}\)
a, Tìm GTNN: A = \(\dfrac{x^2-2x+2013}{x^2}\) ; x>0
b, Tìm GTLN và GTNN của: B = \(\dfrac{4x+1}{4x^2+2}\)
a.
\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)
Dấu "=" xảy ra khi \(x=2013\)
b.
\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)
\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)
\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)
\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)
Tìm GTLN GTNN của A=\(\dfrac{\text{ 2x+1}}{\text{x^2+2 }}\)
\(A=\dfrac{2x+1}{x^2+2}\)
\(\Leftrightarrow Ax^{2\:}+2A=2x+1\)
+) \(A=0\Rightarrow x=-\dfrac{1}{2}\)
+) \(A\ne0\)
\(Ax^2+2A=2x+1\)
\(\Leftrightarrow Ax^{2\:}-2x=1-2A\)
\(\Leftrightarrow x^2-2.\dfrac{x}{A}=\dfrac{1-2A}{A}\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{A}+\dfrac{1}{A^2}=\dfrac{1-2A}{A}+\dfrac{1}{A^2}\)
\(\Leftrightarrow\left(x-\dfrac{1}{A}\right)^2=\dfrac{A-2A^2+1}{A^2}\)
\(\Leftrightarrow\left(x-\dfrac{1}{A}\right)^2=\dfrac{\left(1-A\right)\left(2A+1\right)}{A^2}\)
Vì \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{A}\right)^2\ge0\left(\forall x,A\ne0\right)\\A^2\ge0\end{matrix}\right.\)
⇒ \(\left(1-A\right)\left(2A+1\right)\ge0\)
⇒ \(-\dfrac{1}{2}\le A\le1\)
Còn lại tụ làm nha
\(A=\dfrac{2x+1}{x^2+2}=\dfrac{x^2+2-x^2-2+2x+1}{x^2+2}\\ =1-\dfrac{-\left(x-1\right)^2}{x^2+2}\\ Do\left(x-1\right)^2\ge0\Rightarrow\dfrac{-\left(x-1\right)^2}{x^2+2}\ge0\\ \Rightarrow\dfrac{-\left(x-1\right)^2}{x^2+2}=0\Leftrightarrow\dfrac{-\left(x-1\right)^2}{x^2+2}+1\le1\)
\(Dấu"="\Leftrightarrow A=1\\ \Leftrightarrow x-1=0\Rightarrow x=1\\ Vậy.P_{max}=1.khi.x=1\\ A=\dfrac{2x+1}{x^2+2}\rightarrow2A+1=\dfrac{2.\left(2x+1\right)}{x^2+2}+1\\ =\dfrac{4x+2+x^2+2}{x^2+2}=\dfrac{x^2+4x+2}{x^2+2}=\dfrac{\left(x+2\right)^2}{x^2+2}\\ Do\left(x+2\right)^2\ge0\Leftrightarrow\dfrac{\left(x+2\right)^2}{x^2+2}\ge0\)
\(Dấu"="\Leftrightarrow A=\dfrac{1}{2}khi.x=-2\\ \Rightarrow2A+1\ge0\Rightarrow2A\ge-1\Rightarrow A>-\dfrac{1}{2}\\ Vậy.MinA=-\dfrac{1}{2}.khi.x=-2\)
Tìm GTNN và GTLN nếu có của các biểu thức
\(A=\dfrac{2x^2-2x+5}{\left(x+1\right)^2}\)
\(B=\dfrac{4x^2+x+4}{x^2+x+1}\)
Biểu thức nào em?
Tìm GTNN, GTLN của biểu thức:
A=\(-\dfrac{1}{3}x^2+2x\)
Bài này chỉ tìm được GTLN thôi nhé bạn.
Ta thấy \(A=-\dfrac{1}{3}x^2+2x\)
\(A=-\dfrac{1}{3}\left(x^2-6x\right)\)
\(A=-\dfrac{1}{3}\left(x^2-6x+9\right)+3\)
\(A=-\dfrac{1}{3}\left(x-3\right)^2+3\)
Vì \(\left(x-3\right)^2\ge0\) nên \(A\le3\) (dấu "=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)). Như vậy GTLN của A là 3, đạt được khi \(x=3\).
Tìm GTLN của Q=\(-2x^2+6x+8\)
Tìm GTLN và GTNN của: A=\(\dfrac{6x+17}{x^2+2}\)
\(Q=-2\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{2}\le\dfrac{25}{2}\)
\(Q_{max}=\dfrac{25}{2}\) khi \(x=\dfrac{3}{2}\)
\(A=\dfrac{9\left(x^2+2\right)-9x^2+6x-1}{x^2+2}=9-\dfrac{\left(3x-1\right)^2}{x^2+2}\le9\)
\(A_{max}=9\) khi \(x=\dfrac{1}{3}\)
\(A=\dfrac{12x+34}{2\left(x^2+2\right)}=\dfrac{-\left(x^2+2\right)+x^2+12x+36}{2\left(x^2+2\right)}=-\dfrac{1}{2}+\dfrac{\left(x+6\right)^2}{2\left(x^2+2\right)}\le-\dfrac{1}{2}\)
\(A_{min}=-\dfrac{1}{2}\) khi \(x=-6\)
1. Cho x là số thực không nhỏ hơn 2. Tìm GTNN của biểu thức sau:
A= \(\dfrac{2}{-x^2-2x+5}\)
2. Tìm GTLN của biểu thức sau:
B= \(\dfrac{-x^2-x-1}{x^2}\)
Câu 2:
ĐKXĐ: x<>0
\(B=\dfrac{-x^2-x-1}{x^2}\)
\(=-1-\dfrac{1}{x}-\dfrac{1}{x^2}\)
\(=-\left(\dfrac{1}{x^2}+\dfrac{1}{x}+1\right)\)
\(=-\left(\dfrac{1}{x^2}+2\cdot\dfrac{1}{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=-\left(\dfrac{1}{x}+\dfrac{1}{2}\right)^2-\dfrac{3}{4}< =-\dfrac{3}{4}\forall x< >0\)
Dấu '=' xảy ra khi 1/x+1/2=0
=>1/x=-1/2
=>x=-2
tìm GTLN và GTNN
\(A=\dfrac{x^2+10x+16}{x^2+2x+2}\)
\(đk:x^2+2x+2\ne0\Leftrightarrow x^2+2x+1+1=\left(x+1\right)^2+1\ne0\left(luôn-đúng\right)\)
\(A=\dfrac{x^2+10x+16}{x^2+2x+2}\Leftrightarrow A\left(x^2+2x+2\right)=x^2+10x+16\)
\(\Leftrightarrow Ax^2+2Ax+2A-x^2-10x-16=0\)
\(\Leftrightarrow x^2\left(A-1\right)+x\left(2A-10\right)+2A-16=0\)
\(\Rightarrow\Delta\ge0\Leftrightarrow\left(2A-10\right)^2-4\left(A-1\right)\left(2A-16\right)\ge0\)
\(\Leftrightarrow4A^2-40A+100-4\left(2A^2-18A+16\right)\ge0\)
\(\Leftrightarrow-4A^2+32A+36\ge0\Rightarrow-1\le A\le9\Rightarrow\left\{{}\begin{matrix}MinA=-1\\MaxA=9\end{matrix}\right.\)
\(tại\) \(MinA=-1\) \(dấu"="\) \(xảy\) \(ra\Leftrightarrow x=-3\)
\(tại\) \(MaxA=9\) \(dấu"='\) \(xảy\) \(ra\Leftrightarrow x=-0,5\)
1. tìm GTNN của A= x(x+2)(x+4)(x+6)+8
2. tìm GTLN của B=5+(1-x)(x+2)(x+3)(x+6)3
3.tìm GTNN của C=(x+3)4 + (x-7)4
4. Cho x>0. Tìm GTNN của P=\(\dfrac{4x^2+1}{2x}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
3.
Đặt $x+3=a; 7-x=b$ thì $a+b=10$
$C=a^4+b^4$
Áp dụng BĐT Bunhiacopxky:
$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$
$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$
$\Rightarrow a^2+b^2\geq 50$
$\Rightarrow C\geq \frac{50^2}{2}=1250$
Vậy $C_{\min}=1250$
Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$
a) Tìm GTNN Của:
A=\(\left(2x+\dfrac{1}{3}\right)^4-1\)
a) Tìm GTLN Của:
B=\(-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)
\(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)
vì \(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0,\forall x\inℝ\)
\(\Rightarrow B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{4}{9}x-\dfrac{2}{15}=0\Rightarrow\dfrac{4}{9}x=\dfrac{2}{15}\Rightarrow x=\dfrac{9}{15}\)
Vậy \(GTLN\left(B\right)=3\left(tạix=\dfrac{9}{15}\right)\)
\(A=\left(2x+\dfrac{1}{3}\right)^4-1\)
vì \(\left(2x+\dfrac{1}{3}\right)^4\ge0,\forall x\inℝ\)
\(\Rightarrow A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)
Dấu "=" xảy ra khi và chỉ khi
\(2x+\dfrac{1}{3}=0\Rightarrow2x=-\dfrac{1}{3}\Rightarrow x=-\dfrac{1}{6}\)
\(\Rightarrow GTNN\left(A\right)=-1\left(tạix=-\dfrac{1}{6}\right)\)