Giai hệ pt:
\(\left\{{}\begin{matrix}x+y+z=7\\x^2+y^2+z^2\\xy=y^2\end{matrix}\right.=21\)
giải hệ 1 \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)
2.\(\left\{{}\begin{matrix}xy-x-y=5\\yz-y-z=11\\zx-z-x=7\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\\y^2+xy-yz+z^2=0\\x^2-xy-xz-z^2=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)
Lấy (2) cộng (3) ta được
\(x^2+y^2-yz-zx=2\) (4)
Lấy (1) - (4) ta được
\(2x\left(x+z\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)
Xét 2 TH rồi thay vào tìm được y và z
1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)
Đến đây thì dễ rồi nhé
2. \(\left\{{}\begin{matrix}\left(xy-x\right)-\left(y-1\right)=6\\\left(yz-y\right)-\left(z-1\right)=12\\\left(zx-z\right)-\left(x-1\right)=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)=6\\\left(y-1\right)\left(z-1\right)=12\\\left(z-1\right)\left(x-1\right)=8\end{matrix}\right.\)
Đến đây dễ rồi
Giai hệ PT sau:\(\left\{{}\begin{matrix}2x^2+xy=3y+6\\2y^2+xy=3x+6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}xy+x^2=1+y\\yx+y^2=1+x\end{matrix}\right.\)
giải hệ pt :
a,\(\left\{{}\begin{matrix}x^2+xy+y^2=3\\x+xy+y=-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3-y^3=7\left(x-y\right)\\x^2+y^2=x+y+2\end{matrix}\right.\)
a, Cộng vế theo vế hai phương trình ta được:
\(x^2+y^2+2xy+x+y=2\)
\(\Leftrightarrow\left(x+y\right)^2+x+y-2=0\)
\(\Leftrightarrow\left(x+y-1\right)\left(x+y+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=1\\x+y=-2\end{matrix}\right.\)
TH1: \(x+y=1\)
\(pt\left(2\right)\Leftrightarrow xy+1=-1\Leftrightarrow xy=-2\)
Ta có hệ: \(\left\{{}\begin{matrix}x+y=1\\xy=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\xy=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\end{matrix}\right.\)
TH2: \(x+y=-2\)
\(pt\left(2\right)\Leftrightarrow xy-2=-1\Leftrightarrow xy=1\)
Ta có hệ: \(\left\{{}\begin{matrix}x+y=-2\\xy=1\end{matrix}\right.\Leftrightarrow x=y=-1\)
b, \(\left\{{}\begin{matrix}x^3-y^3=7\left(x-y\right)\\x^2+y^2=x+y+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2+xy-7\right)=0\\x^2+y^2=x+y+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x^2+y^2+xy=7\end{matrix}\right.\\x^2+y^2=x+y+2\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x=y\\x^2+y^2=x+y+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x^2-x-1=0\end{matrix}\right.\)
\(\Leftrightarrow x=y=\dfrac{1\pm\sqrt{5}}{2}\)
TH2: \(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^2+y^2=x+y+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=7\\\left(x+y\right)^2-2xy-x-y=2\end{matrix}\right.\)
Đặt \(x+y=u;xy=v\)
Hệ trở thành: \(\left\{{}\begin{matrix}u^2-v=7\\u^2-2v-u=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\u^2-2\left(u^2-7\right)-u=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\u^2+u-12=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\\left[{}\begin{matrix}u=3\\u=-4\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}v=2\\u=3\end{matrix}\right.\\\left\{{}\begin{matrix}v=9\\u=-4\end{matrix}\right.\end{matrix}\right.\)
Với \(\left\{{}\begin{matrix}v=2\\u=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy=2\\x+y=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\end{matrix}\right.\)
Với \(\left\{{}\begin{matrix}v=9\\u=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy=9\\x+y=-4\end{matrix}\right.\left(vn\right)\)
a) Cho x,y,z thỏa mãn x+y+z+xy+yz+zx=6. Tìm Min \(P=x^2+y^2+z^2\)
giải hệ pt : 1) \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}+\sqrt{2-\dfrac{1}{y}}=2\\\dfrac{1}{\sqrt{y}}+\sqrt{2-\dfrac{1}{x}}=2\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^4+x^2y^2+y^4=21\end{matrix}\right.\)
1. Với mọi số thực x;y;z ta có:
\(x^2+y^2+z^2+\dfrac{1}{2}\left(x^2+1\right)+\dfrac{1}{2}\left(y^2+1\right)+\dfrac{1}{2}\left(z^2+1\right)\ge xy+yz+zx+x+y+z\)
\(\Leftrightarrow\dfrac{3}{2}P+\dfrac{3}{2}\ge6\)
\(\Rightarrow P\ge3\)
\(P_{min}=3\) khi \(x=y=z=1\)
1.1
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}=a>0\\\dfrac{1}{\sqrt{y}}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+\sqrt{2-b^2}=2\\b+\sqrt{2-a^2}=2\end{matrix}\right.\)
\(\Rightarrow a-b+\sqrt{2-b^2}-\sqrt{2-a^2}=0\)
\(\Leftrightarrow a-b+\dfrac{\left(a-b\right)\left(a+b\right)}{\sqrt{2-b^2}+\sqrt{2-a^2}}=0\)
\(\Leftrightarrow a=b\Leftrightarrow x=y\)
Thay vào pt đầu:
\(a+\sqrt{2-a^2}=2\Rightarrow\sqrt{2-a^2}=2-a\) (\(a\le2\))
\(\Leftrightarrow2-a^2=4-4a+a^2\Leftrightarrow2a^2-4a+2=0\)
\(\Rightarrow a=1\Rightarrow x=y=1\)
2.
\(\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^2-xy+y^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+3xy+3y^2=21\\7x^2-7xy+7y^2=21\end{matrix}\right.\)
\(\Rightarrow4x^2-10xy+4y^2=0\)
\(\Leftrightarrow2\left(2x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=\dfrac{1}{2}x\end{matrix}\right.\)
Thế vào pt đầu
...
Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=5\\\left(xy-1\right)^2=x^2-y^2+2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x,y,z>0\\\dfrac{1}{x}+\dfrac{9}{y}+\dfrac{16}{z}=9\\x+y+z\le4\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x+y+z=3\\x^4+y^4+z^4=3xyz\end{matrix}\right.\)
b) Áp dụng bđt Svac-xơ:
\(\dfrac{1}{x}+\dfrac{9}{y}+\dfrac{16}{z}\ge\dfrac{\left(1+3+4\right)^2}{x+y+z}\ge\dfrac{64}{4}=16>9\)
=> hpt vô nghiệm
c) Ở đây x,y,z là các số thực dương
Áp dụng cosi: \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=3xyz\)
Dấu = xảy ra khi \(x=y=z=\dfrac{3}{3}=1\)
giải hệ pt
\(\left\{\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{3}{2}\\\frac{x\text{z}}{x+z}=\frac{6}{7}\end{matrix}\right.\)
Bài này đơn giản thôi :))
\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} \frac{x+y}{xy}=\frac{3}{2}\\ \frac{y+z}{yz}=\frac{2}{3}\\ \frac{x+z}{xz}=\frac{7}{6}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}=\frac{3}{2}\\ \frac{1}{y}+\frac{1}{z}=\frac{2}{3}\\ \frac{1}{x}+\frac{1}{z}=\frac{7}{6}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{2}{x}=\frac{3}{2}+\frac{7}{6}-\frac{2}{3}\\ \frac{2}{y}=\frac{3}{2}+\frac{2}{3}-\frac{7}{6}\\ \frac{2}{z}=\frac{2}{3}+\frac{7}{6}-\frac{3}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=2\\ z=6\end{matrix}\right.\)
Vậy $(x,y,z)=(1,2,6)$ là nghiệm của hệ phương trình
Giải hệ pt sau \(\left\{{}\begin{matrix}x^2-xy+y^2=3\\z^2+yz+1=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2-xy+y^2=3\\z^2+yz+1=0\end{matrix}\right.\)
Cộng 2 vế của 2 BĐT trên ta được:
x2 - xy + y2 + z2 + yz + 1 = 3
\(\Leftrightarrow\) 2x2 - 2xy + 2y2 + 2z2 + 2yz - 4 = 0
\(\Leftrightarrow\) x2 - 2xy + y2 + y2 + 2yz + z2 + x2 - 4 + z2 = 0
\(\Leftrightarrow\) (x - y)2 + (y + z)2 + z2 + (x - 2)(x + 2) = 0
Ta có: (x - y)2 \(\ge\) 0 với mọi x; y
(y + z)2 \(\ge\) 0 với mọi y; z
z2 \(\ge\) 0 với mọi z
\(\Rightarrow\) (x - y)2 + (y + z)2 + z2 \(\ge\) 0 với mọi x; y; z
\(\Rightarrow\) (x - 2)(x + 2) \(\ge\) 0
Dấu "=" xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}2-y=0\\y+z=0\\z=0\\\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\end{matrix}\right.\)
Với x = 2 ta có: (2 - y)2 + (y + z)2 + z2 = 0
Dấu "=" xảy ra
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2-y=0\\y+z=0\\z=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=2\\z=0\end{matrix}\right.\)
Thử lại thấy KTM
Với x = -2 ta có: (-2 - y)2 + (y + z)2 + z2 = 0
Dấu "=" xảy ra
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-2-y=0\\y+z=0\\z=0\end{matrix}\right.\) (Vô nghiệm)
Vậy hpt vô nghiệm
Mk ko chắc lắm ;-; (ko bt đúng ko :v)
Xét pt thứ 2 là pt bậc 2 so với ẩn z.
Ta có \(\Delta=y^2-4\ge0\Leftrightarrow y^2\ge4\).
Do đó ta có: \(x^2-xy+y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge3\).
Đẳng thức xảy ra khi và chỉ khi \(y^2=4;x=\dfrac{1}{2}y\).
+) y = 2 \(\Rightarrow x=1;z=-1\).
+) \(y=-2\Rightarrow x=-1;z=1\).
Giai he phuong trinh:
a) \(\left\{{}\begin{matrix}\left(x+y\right).\left(y+z\right)=187\\\left(y+z\right).\left(z+x\right)=154\\\left(z+x\right).\left(x+y\right)=238\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2+y^2+z^2=xy+yz+xz\\x^{2019}+y^{2019}+z^{2019}=3^{2020}\end{matrix}\right.\)
Giải hệ pt:\(\left\{{}\begin{matrix}x^2+y^2+z^2=xy+yz+zx\\x^{2010}+y^{2010}+z^{2010}=3^{2010}\end{matrix}\right.\)
\(x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
\(\Rightarrow x-y=y-z=z-x=0\)\(\Rightarrow x=y=z\)
\(\Rightarrow x^{2010}+y^{2010}+z^{2010}=3x^{2010}=3^{2010}\)
\(\Rightarrow x^{2010}=\dfrac{3^{2010}}{3}=3^{2009}\Rightarrow x=\sqrt[2010]{3^{2009}}\)
\(\Rightarrow x=y=z=\sqrt[2010]{3^{2009}}\)
Lời giải:
PT (1)
\(\Leftrightarrow x^2+y^2+z^2-(xy+yz+xz)=0\)
\(\Leftrightarrow 2(x^2+y^2+z^2)-2(xy+yz+xz)=0\)
\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)
Thấy rằng \((x-y)^2; (y-z)^2; (z-x)^2\geq 0\forall x,y,z\in\mathbb{R}\)
\(\Rightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} (x-y)^2=0\\ (y-z)^2=0\\ (z-x)^2=0\end{matrix}\right.\Leftrightarrow x=y=z\)
Thay vào PT (2)
\(\Leftrightarrow x^{2010}+x^{2010}+x^{2010}=3^{2010}\)
\(\Leftrightarrow 3.x^{2010}=3^{2010}\Leftrightarrow x^{2010}=3^{2009}\)
\(\Leftrightarrow x=\sqrt[2010]{3^{2009}}\)
Vậy \((x,y,z)=(\sqrt[2010]{3^{2009}},\sqrt[2010]{3^{2009}},\sqrt[2010]{3^{2009}})\)