Những câu hỏi liên quan
HN
Xem chi tiết
NT
19 tháng 4 2023 lúc 23:15

\(\dfrac{1}{\sqrt{a^2-ab+b^2}}< =\dfrac{1}{\sqrt{2ab-ab}}=\dfrac{1}{\sqrt{ab}}\)

\(\sqrt{\dfrac{1}{b^2-bc+c^2}}< =\dfrac{1}{\sqrt{bc}};\sqrt{\dfrac{1}{c^2-ac+c^2}}< =\dfrac{1}{\sqrt{ac}}\)

=>P<=1/a+1/b+1/c=3

Dấu = xảy ra khi a=b=c=1

Bình luận (0)
HN
Xem chi tiết
DD
6 tháng 6 2023 lúc 23:05

 Bạn tham khảo bài này trên Quanda nha.loading...  

Bình luận (0)
VH
Xem chi tiết
NL
3 tháng 5 2021 lúc 13:59

\(P\le\dfrac{a}{2\sqrt{a^2bc}}+\dfrac{b}{2\sqrt{b^2ca}}+\dfrac{c}{2\sqrt{c^2ab}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ca}}\right)\)

\(P\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\right)=\dfrac{1}{2}\left(\dfrac{ab+bc+ca}{abc}\right)\le\dfrac{1}{2}\left(\dfrac{a^2+b^2+c^2}{abc}\right)=\dfrac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

Bình luận (0)
H24
3 tháng 5 2021 lúc 15:26

Áp dụng cosi:

`a^2+bc>=2a\sqrt{bc}`

Hoàn toàn tương tự:

`=>P<=1/2(1/sqrt{ab}+1/sqrt{bc}+1/sqrt{ca})`

Áp dụng cosi:

`1/a+1/b+1/c>=1/sqrt(ab)+1/sqrt(bc)+1/sqrt(ca)`

`=>P<=1/2(1/a+1/b+1/c)`

`=>P<=1/2((ab+bc+ca)/(abc))<=(a^2+b^2+c^2)/(2(abc))=1/2`

Dấu "=" `<=>a=b=c=3`

Bình luận (0)
MT
Xem chi tiết
MT
Xem chi tiết
MT
21 tháng 8 2021 lúc 20:51

mong mn giúp mk vs 

Bình luận (0)
PP
Xem chi tiết
NL
9 tháng 4 2021 lúc 5:03

\(ab+bc+ca=3\Rightarrow\left\{{}\begin{matrix}a+b+c\ge3\\abc\le1\end{matrix}\right.\)

Ta sẽ chứng minh \(P\le\dfrac{3}{8}\)

\(P\le\dfrac{a}{6a+2}+\dfrac{b}{6b+2}+\dfrac{c}{6c+2}\) nên chỉ cần chứng minh: \(\dfrac{a}{3a+1}+\dfrac{b}{3b+1}+\dfrac{c}{3c+1}\le\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{3a+1}+\dfrac{1}{3b+1}+\dfrac{1}{3c+1}\ge\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{\left(3a+1\right)\left(3b+1\right)+\left(3b+1\right)\left(3c+1\right)+\left(3c+1\right)\left(3a+1\right)}{\left(3a+1\right)\left(3b+1\right)\left(3c+1\right)}\ge\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{6\left(a+b+c\right)+30}{27abc+3\left(a+b+c\right)+28}\ge\dfrac{3}{4}\)

\(\Rightarrow\dfrac{6\left(a+b+c\right)+30}{27+3\left(a+b+c\right)+28}\ge\dfrac{3}{4}\)

\(\Leftrightarrow24\left(a+b+c\right)+120\ge165+9\left(a+b+c\right)\)

\(\Leftrightarrow a+b+c\ge3\) (đúng)

Bình luận (0)
BA
Xem chi tiết
NL
17 tháng 12 2020 lúc 10:59

\(a+b+c+2=abc\)

\(\Leftrightarrow2a+2b+2c+3+ab+bc+ca=abc+ab+bc+ca+a+b+c+1\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)+\left(c+1\right)\left(b+1\right)+\left(c+1\right)\left(a+1\right)=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}=1\)

Đặt \(\left(\dfrac{1}{a+1};\dfrac{1}{b+1};\dfrac{1}{c+1}\right)=\left(x;y;z\right)\)

\(\Rightarrow x+y+z=1\)

BĐT trở thành:

\(P=\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}=\sqrt{3}\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=\dfrac{1}{3}\) hay \(a=b=c=2\)

Bình luận (0)
NP
Xem chi tiết
NP
8 tháng 3 2022 lúc 9:13

Cái c là \(\dfrac{2}{\sqrt{1+c^2}}\) ạ

Bình luận (0)
NL
8 tháng 3 2022 lúc 15:23

\(P=\dfrac{2-\left(1+a^2\right)}{1+a^2}+\dfrac{2-\left(1+b^2\right)}{1+b^2}+\dfrac{2}{\sqrt{1+c^2}}\)

\(P=2\left(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}+\dfrac{1}{\sqrt{1+c^2}}\right)-2\) 

Từ điều kiện \(ab+bc+ca=1\), đặt \(\left\{{}\begin{matrix}a=tanx\\b=tany\\c=tanz\end{matrix}\right.\) với \(x+y+z=\dfrac{\pi}{2}\)

Xét \(Q=\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}+\dfrac{1}{\sqrt{1+c^2}}=\dfrac{1}{1+tan^2x}+\dfrac{1}{1+tan^2y}+\dfrac{1}{\sqrt{1+tan^2z}}\)

\(Q=cos^2x+cos^2y+cosz=1+\dfrac{1}{2}\left(cos2x+cos2y\right)+cosz\)

\(=1+cos\left(x+y\right)cos\left(x-y\right)+cosz\le1+cos\left(x+y\right)+cosz\)

\(=1+cos\left(\dfrac{\pi}{2}-z\right)+cosz=1+sinz+cosz=1+\sqrt{2}sin\left(z+\dfrac{\pi}{4}\right)\le1+\sqrt{2}\)

\(\Rightarrow P\le2\left(1+\sqrt{2}\right)-2=2\sqrt{2}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=y=\dfrac{\pi}{8}\\z=\dfrac{\pi}{4}\end{matrix}\right.\) \(\Rightarrow\left(a;b;c\right)=\left(\sqrt{2}-1;\sqrt{2}-1;1\right)\)

Bình luận (0)
H24
Xem chi tiết
KB
8 tháng 4 2022 lúc 16:31

ĐK : a;b;c > 0 

Ta có : \(ab+bc+ac=1\) \(\Leftrightarrow c\left(a+b\right)=1-ab\Leftrightarrow c=\dfrac{1-ab}{a+b}\)

Khi đó :  \(c^2+1=\left(\dfrac{1-ab}{a+b}\right)^2+1\)  \(=\dfrac{\left(ab\right)^2+1+a^2+b^2}{\left(a+b\right)^2}=\dfrac{\left(a^2+1\right)\left(b^2+1\right)}{\left(a+b\right)^2}\)

\(\Rightarrow\dfrac{1}{c^2+1}=\dfrac{\left(a+b\right)^2}{\left(a^2+1\right)\left(b^2+1\right)}\) 

Ta có : \(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}=\dfrac{ab^2+a^2b+a+b}{\left(a^2+1\right)\left(b^2+1\right)}=\dfrac{\left(ab+1\right)\left(a+b\right)}{\left(a^2+1\right)\left(b^2+1\right)}\)

Suy ra : \(A=\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}-\dfrac{1}{c^2+1}=\dfrac{\left(a+b\right)\left(ab+1-a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)}=\dfrac{\left(a+b\right)\left(1-a\right)\left(1-b\right)}{\left(a^2+1\right)\left(b^2+1\right)}\)

AD BĐT Cauchy ta được :  \(\left(a+b\right)\left[\left(1-a\right)\left(1-b\right)\right]\le\dfrac{\left[a+b+\left(1-a\right)\left(1-b\right)\right]^2}{4}=\dfrac{\left(1+ab\right)^2}{4}\)

\(\left(a^2+1\right)\left(b^2+1\right)\ge\left(ab+1\right)^2\)  ( theo BCS )

Suy ra : \(A\le\dfrac{1}{4}\)

Bình luận (0)