Biết A(1;-1) và B(3;0) là hai đỉnh của hình vuông ABCD. Tìm tọa độ các đỉnh C ?
A. (4;2)
B. (2;2)
C. (4; -2)
D. Cả B và C đúng
Biết A(1;-1) và B(3;0) là hai đỉnh của hình vuông ABCD. Tìm tọa độ các đỉnh C ?
A. (4;2)
B. (2;2)
C. (4; -2)
D. Cả B và C đúng
Chọn D.
Giả sử tọa độ điểm C là (x; y) ;
và
Ta có :
Tứ giác ABCD hình vuông nên
Giải hệ phương trình trên ta được x = 4; y = -2 hoặc x = 2; y = 2
Từ đó suy ra có 2 điểm C thỏa mãn là C(4; -2) hoặc C( 2; 2)
Trong không gian với hệ tọa độ Oxyz, cho hình thang ABCD có hai đáy AB, CD; có tọa độ ba đỉnh A ( 1 ; 2 ; 1 ) , B ( 2 ; 0 ; - 1 ) , C ( 6 ; 1 ; 0 ) . Biết hình thang có diện tích bằng 6 2 . Giả sử đỉnh D ( a ; b ; c ) , tìm mệnh đề đúng?
Chuyên đề giải tam giác
Bài1 : Cho tam giác ABC có tọa độ đỉnh A , hai đường cao xuất phát từ hai đỉnh có phương trình lần lượt là d1 và d2 . Tìm tọa độ các đỉnh và tâm đường tròn nội tiếp ΔABC biết : A[ 1;3] , d1: x-2y+1=0 , d2: y-1=0
Bài\(\)2 Cho tam giác ABC có pt hai cạnh và tọa độ trung điểm của cạnh thứ 3 . Hãy tìm tọa độ các đỉnh và tìm tọa độ chân đường phân giác trong góc BAC của ΔABC biết : AB:2x+y-2=0 , AC: x+3y-3=0 , M [ -1 , 1]
Trong mặt phẳng tọa độ Oxy, cho \(A\left(1;-1\right);B\left(3;0\right)\) là hai đỉnh của hình vuông ABCD. Tìm tọa độ của các đỉnh còn lại ?
Cho tam giác ABC có tọa độ 3 đinh là A(4; 1), B(3; 2), C(1; 6).Viết phương trình: f) đường thẳng đi qua A và tạo với hai trục tọa độ một tam giác cân đỉnh là gốc tọa độ.
Cho tam giác ABC có trọng tâm là gốc tọa độ O, hai đỉnh A và B có tọa độ là A(-2;2), B(3;5).Tọa độ trung điểm của OC là
A. (-3/2;-5/2) B. (1/2;-1) C. (-1/2;-7/2) D. (1;7)
Trong mặt phẳng tọa độ Oxy cho tam giác ABC có trọng tâm là gốc tọa độ O, hai đỉnh A(-2,2) và B(3,5). Tọa độ đỉnh C là
\(\left\{{}\begin{matrix}x_O=\frac{x_A+x_B+x_C}{3}\\y_O=\frac{y_A+y_B+y_C}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_C=3x_O-x_A-x_B=-1\\y_C=3y_O-y_A-y_B=-7\end{matrix}\right.\)
\(\Rightarrow C\left(-1;-7\right)\)
Cho tam giác ABC có tọa độ 3 đinh là A(4; 1), B(3; 2), C(1;6).Viết phương trình: f) đường thẳng đi qua A và tạo với hai trục tọa độ một tam giác cân đỉnh là gốc tọa độ
Đối xứng của A qua trục tung là A'(4; -1) và đối xứng của A qua trục hoành là A"(-4; 1).
Vậy đỉnh thứ hai của tam giác cân là I(-4; -1).
Ta có thể tính được hệ số góc của đường thẳng AI bằng công thức:
\(m=\dfrac{y_A-y_I}{x_A-x_I}=\dfrac{1-\left(-1\right)}{4-\left(-4\right)}=\dfrac{1}{4}\)
Vậy phương trình đường thẳng AI là:
\(y-y_A=m\left(x-x_A\right)\)
\(y-1=\dfrac{1}{4}\left(x-4\right)\)
\(4y-4=x-4\)
\(x-4y=0\)
Vậy phương trình đường thẳng cần tìm là \(x-4y=0\)
Đường thẳng đi qua A và tạo với hai trục tọa độ một tam giác cân đỉnh là gốc tọa độ sẽ qua điểm trung điểm của đoạn thẳng BC, ký hiệu là M.
Có:
Tọa độ x của trung điểm M = \(\dfrac{x_B+x_C}{2}=\dfrac{3+1}{2}=2\)
Tọa độ y của trung điểm M = \(\dfrac{y_B+y_C}{2}=\dfrac{2+6}{2}=4\)
Vậy tọa độ của điểm M là (2, 4).
Phương trình đường thẳng đi qua A và M là:
\(y-1=\dfrac{4-1}{2-4}.\left(x-4\right)\Rightarrow y=-1,5x+7\)y
Vậy phương trình đường thẳng cần tìm là \(y=-1,5x+7.\)
(Cái câu kia mình làm cho bài khác tính cop màn hình mà bấm gửi nhầm ở đây, bài giải này mới đúng nhé!)
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật biết tọa độ hai đỉnh đối diện là \(\left(1;-5\right)\) và \(\left(6;2\right)\) phương trình của một đường chéo là \(5x+7y-7=0\). Tìm tọa độ các đỉnh còn lại của hình chữ nhật ?