Những câu hỏi liên quan
HN
Xem chi tiết
NT
16 tháng 11 2022 lúc 22:52

 

loading...

Vì đây là 7 số nguyên liên tiếp

nên A chia hết cho 7!

=>A chia hết cho 5040

=>A chia hết cho 210

Bình luận (0)
NM
Xem chi tiết
HN
Xem chi tiết
AT
20 tháng 10 2018 lúc 14:18

Ta có:

\(A=n^3\left(n^2-7\right)^2-36n\)

\(A=n^3\left(n^4-14n^2+49\right)-36n\)

\(A=n^7-14n^5+49n^3-36n\)

\(A=n^7+12n^5+36n^3-25n^5-n^5-12n^3-36n+25n^3\)

\(A=n^3\left(n^4+12n^2+36-25n^2\right)-n\left(n^4+12n^2+36-25n^2\right)\)

\(A=\left(n^3-n\right)\left(n^4+12n^2+36-25n^2\right)\)

\(A=n\left(n^2-1\right)\left(n^4+12n^2+36-25n^2\right)\)

\(A=n\left(n-1\right)\left(n+1\right)\left[\left(n^2+6\right)^2-\left(5n\right)^2\right]\)

\(A=n\left(n-1\right)\left(n+1\right)\left(n^2-5n+6\right)\left(n^2+5n+6\right)\)

\(A=n\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n-2\right)\left(n+2\right)\left(n+3\right)\)

\(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮7\)

*Tích 7 số nguyên liên tiếp chia hết cho 7.

Bình luận (0)
KG
Xem chi tiết
LT
25 tháng 7 2023 lúc 10:12

�=�[�2(�2−7)2−36]=�[(�3−7�)2−36]

=�(�3−7�−6)(�3−7�+6)

=�(�−3)(�+1)(�+2)(�−2)(�−1)(�+3)

⇒� là tích 7 số nguyên liên tiếp nên A luôn chia hết cho 7

Bình luận (0)
LL
25 tháng 7 2023 lúc 8:56

Bình luận (0)
LT
25 tháng 7 2023 lúc 9:44

A = [ n3(n2-7)2-36n ] ⋮ 7 với ∀n ϵ Z

Bình luận (0)
TT
Xem chi tiết
NT
26 tháng 10 2022 lúc 15:18

loading...

Vì đây là 7 số nguyên liên tiếp

nên A chia hết cho 7

Bình luận (0)
NY
Xem chi tiết
NT
26 tháng 10 2022 lúc 15:18

loading...

Vì đây là 7 số nguyên liên tiếp

nên A chia hết cho 7

Bình luận (0)
MB
Xem chi tiết
MB
Xem chi tiết
HN
Xem chi tiết
NT
26 tháng 10 2022 lúc 15:15

\(=n\left(n^3-7n-36\right)\)

\(=n\left(n^3-4n^2+4n^2-16n+9n-36\right)\)

\(=n\left(n-4\right)\left(n^2+4n+9\right)\)

TH1: n=7k

\(A=7k\left(7k-4\right)\cdot B⋮7\)

TH2: n=7k+1

\(A=\left(7k+1\right)\left(7k-3\right)\left(49k^2-14k+1+28k+4+9\right)\)

\(=\left(7k+1\right)\left(7k-3\right)\left(49k^2+14k+14\right)⋮7\)

TH3: n=7k+2

\(A=\left(7k+2\right)\left(7k-2\right)\left(49k^2+28k+4+28k+8+9\right)\)

\(=C\cdot\left(49k^2+56k+14\right)⋮7\)

Nếu n=10 thì A ko chia hết cho 7 nha bạn

Bình luận (0)