Violympic toán 9

HN

cmr: a=\(n^3\left(n^2-7\right)^2-36n⋮7\) với mọi n

NT
26 tháng 10 2022 lúc 15:15

\(=n\left(n^3-7n-36\right)\)

\(=n\left(n^3-4n^2+4n^2-16n+9n-36\right)\)

\(=n\left(n-4\right)\left(n^2+4n+9\right)\)

TH1: n=7k

\(A=7k\left(7k-4\right)\cdot B⋮7\)

TH2: n=7k+1

\(A=\left(7k+1\right)\left(7k-3\right)\left(49k^2-14k+1+28k+4+9\right)\)

\(=\left(7k+1\right)\left(7k-3\right)\left(49k^2+14k+14\right)⋮7\)

TH3: n=7k+2

\(A=\left(7k+2\right)\left(7k-2\right)\left(49k^2+28k+4+28k+8+9\right)\)

\(=C\cdot\left(49k^2+56k+14\right)⋮7\)

Nếu n=10 thì A ko chia hết cho 7 nha bạn

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
HB
Xem chi tiết
PT
Xem chi tiết
NH
Xem chi tiết
NM
Xem chi tiết
LN
Xem chi tiết
BB
Xem chi tiết