Violympic toán 9

HN

cmr:

\(a=n^3\left(n^2-7\right)^2-36n⋮7\forall n\)

AT
20 tháng 10 2018 lúc 14:18

Ta có:

\(A=n^3\left(n^2-7\right)^2-36n\)

\(A=n^3\left(n^4-14n^2+49\right)-36n\)

\(A=n^7-14n^5+49n^3-36n\)

\(A=n^7+12n^5+36n^3-25n^5-n^5-12n^3-36n+25n^3\)

\(A=n^3\left(n^4+12n^2+36-25n^2\right)-n\left(n^4+12n^2+36-25n^2\right)\)

\(A=\left(n^3-n\right)\left(n^4+12n^2+36-25n^2\right)\)

\(A=n\left(n^2-1\right)\left(n^4+12n^2+36-25n^2\right)\)

\(A=n\left(n-1\right)\left(n+1\right)\left[\left(n^2+6\right)^2-\left(5n\right)^2\right]\)

\(A=n\left(n-1\right)\left(n+1\right)\left(n^2-5n+6\right)\left(n^2+5n+6\right)\)

\(A=n\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n-2\right)\left(n+2\right)\left(n+3\right)\)

\(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮7\)

*Tích 7 số nguyên liên tiếp chia hết cho 7.

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
LH
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
NM
Xem chi tiết
DA
Xem chi tiết