Những câu hỏi liên quan
LT
Xem chi tiết
NT
22 tháng 9 2021 lúc 15:01

Xét ΔAHC vuông tại H có 

\(AC^2=AH^2+HC^2\)

nên HC=32(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

hay HB=18(cm)

Ta có: BC=HB+HC

nên BC=50(cm)

Xét ΔABH vuông tại H có 

\(AB^2=BH^2+AH^2\)

hay AB=30(cm)

Bình luận (0)
PK
Xem chi tiết
H24
13 tháng 7 2021 lúc 9:41

a) Áp dụng định lí Pytago trong \(\Delta\) AHC vuông tại H ta có :

      \(AH^2+HC^2=AC^2\)

\(\Rightarrow HC^2=AC^2-AH^2\)

\(\Rightarrow HC=\sqrt{AC^2-AH^2}=\sqrt{40^2-24^2}=32cm\)

b)  Áp dụng định lí Pytago trong \(\Delta\) AHC vuông tại H ta có :

      \(AH^2+HC^2=AC^2\)

\(\Rightarrow AC=\sqrt{AH^2+HC^2}=\sqrt{9,6^2+12,8^2}=16cm\)

Bình luận (1)
AT
13 tháng 7 2021 lúc 9:48

c) \(BC=CH+BH=72+12,5=84,5\left(cm\right)\)

Ta có: \(\left\{{}\begin{matrix}AB^2=BH.BC=12,5.84,5=1056,25\\AC^2=CH.BC=72.84,5=6084\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{65}{2}\left(cm\right)\\AC=78\left(cm\right)\end{matrix}\right.\)

Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{78.\dfrac{65}{2}}{84,5}=30\left(cm\right)\)

Bình luận (1)
LD
Xem chi tiết
NT
17 tháng 8 2021 lúc 13:28

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+9^2=117\)

hay \(BC=3\sqrt{13}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AB\cdot AC=AH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{12\sqrt{13}}{13}\left(cm\right)\\CH=\dfrac{27\sqrt{13}}{13}\left(cm\right)\\AH=\dfrac{18\sqrt{13}}{13}\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
NP
Xem chi tiết
H24
3 tháng 9 2021 lúc 9:26

xét tg AHC có H=90 độ=> AC2=AH2+HC2( dl Py-ta-go)

=> HC2= AC2-AH2=> HC2= 92,16=9,6 cm

Xét tg ABC và tg HAC có H=A=90 độ

                                         C chung 

=> tg ABC~tg HAC(g,g)

=> AH/AB=AC/HC

=>  7,2/AB= 12/9,6=> AB= 7,2.12:9,6=9 cm

Xét tg ABC có A=90 độ(gt)

=> CB2=AB2+AC2(dl PY-ta -go)

=> BC2=225=> BC=15 cm

Mà BH+HC=BC=> BH=BC-HC=> BH=15-9,6=5,4 cm

Bình luận (0)
DH
Xem chi tiết
AH
15 tháng 10 2021 lúc 11:06

a.

$BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10$ (cm) theo định lý Pitago

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=3,6$ (cm) theo định lý Pitago

$CH=BC-BH=10-3,6=6,4$ (cm)

b.

Áp dụng HTL trong tam giác vuông:

$AH^2=BH.CH$

$\Rightarrow BH=\frac{AH^2}{CH}=\frac{AH^2}{CH}=\frac{9,6^2}{12,8}=7,2$ (cm)

$BC=BH+CH=7,2+12,8=20$ (cm)

$AB=\sqrt{AH^2+BH^2}=\sqrt{9,6^2+7,2^2}=12$ (cm) theo Pitago

$AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-12^2}=16$ (cm) theo Pitago

 

Bình luận (0)
AH
15 tháng 10 2021 lúc 11:09

c.

$AB.AC=AH.BC=12.25=300$

$AB^2+AC^2=BC^2=625$

$(AB+AC)^2-2AB.AC=625$

$AB+AC=\sqrt{625+2AB.AC}=\sqrt{625+2.300}=35$

Áp dụng Viet đảo thì $AB,AC$ là nghiệm của:

$X^2-35X+300=0$

$\Rightarrow (AB,AC)=(20,15)$ (giả sử $AB>AC$)

$BH=\sqrt{AB^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)

$CH=\sqrt{AC^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm)

Bình luận (0)
AH
15 tháng 10 2021 lúc 11:15

d.

Áp dụng HTL trong tam giác vuông:

$AB^2=BH.BC$

$\Rightarrow BC=\frac{AB^2}{HB}=\frac{15^2}{9}=25$ (cm)

$CH=BC-BH=25-9=16$ (cm)

Áp dụng HTL:

$AH=\sqrt{BH.CH}=\sqrt{9.16}=12$ (cm)

$AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20$ (cm)

e.

$BC=BH+CH=12,5+7,2=19,7$ (cm)

$AH=\sqrt{HB.HC}=\sqrt{12,5.7,2}=3\sqrt{10}$ (cm)

$AB=sqrt{AH^2+BH^2}=\sqrt{(3\sqrt{10})^2+12,5^2}=\frac{\sqrt{985}}{2}$ (cm)

$AC=\sqrt{AH^2+CH^2}=\sqrt{(3\sqrt{10})^2+7,2^2}=\frac{3\sqrt{394}}{5}$ (cm)

Bình luận (0)
GH
Xem chi tiết
NT
26 tháng 7 2023 lúc 23:02

a: Xét ΔBAC vuông tại A có AH là đường cao

nên BA^2=BH*BC

b: BC=căn 18^2+24^2=30cm

CD là phân giác

=>DA/AC=DB/BC

=>DA/4=DB/5=(DA+DB)/(4+5)=18/9=2

=>DA=8cm

 

Bình luận (0)
DH
Xem chi tiết
NV
Xem chi tiết
PL
Xem chi tiết