Những câu hỏi liên quan
DT
Xem chi tiết
UK
13 tháng 9 2017 lúc 18:15

Sửa đề:

\(VP=\sqrt{1+2005^2+\dfrac{2005^2}{2006^2}}+\dfrac{2005}{2006}\)

Ta có: \(2005^2+1=\left(2005+1\right)^2-2.2005.1=2006^2-2.2005\)

\(\Rightarrow VP=\sqrt{2006^2-2.2005+\dfrac{2005^2}{2006^2}}+\dfrac{2005}{2006}\)

\(=\sqrt{\left(2006-\dfrac{2005}{2006}\right)^2}+\dfrac{2005}{2006}\)

\(=2006-\dfrac{2005}{2006}+\dfrac{2005}{2006}=2006\)

Phương trình đã cho tương đương

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=2006\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2006\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2006\)

Đến đây thì tự xét trường hợp và giải tìm nghiệm, bài này không cần điều kiện nhé

Bình luận (0)
VD
Xem chi tiết
NL
20 tháng 11 2018 lúc 17:36

\(\sqrt{1+2005^2+\dfrac{2005^2}{2006^2}}=\dfrac{1}{2006}\sqrt{2006^2+2005^2+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{\left(2006-2005\right)^2+2.2005.2006+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{1+2.2005.2006+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{\left(2005.2006+1\right)^2}=\dfrac{2005.2006+1}{2006}=2005+\dfrac{1}{2006}\)

Phương trình tương đương:

\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2005+\dfrac{1}{2006}+\dfrac{2005}{2006}\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2006\)

TH1: \(x\ge2\): \(x-1+x-2=2006\Rightarrow2x=2009\Rightarrow x=\dfrac{2009}{2}\)

TH2: \(x\le1\) : \(1-x+2-x=2006\Rightarrow-2x=2003\Rightarrow x=\dfrac{-2003}{2}\)

TH3: \(1< x< 2:\) \(x-1+2-x=2006\Rightarrow3=2006\) (vô nghiệm)

Vậy \(\left[{}\begin{matrix}x=\dfrac{2009}{2}\\x=\dfrac{-2003}{2}\end{matrix}\right.\)

Bình luận (0)
CD
Xem chi tiết
NC
Xem chi tiết
ML
2 tháng 7 2015 lúc 13:35

\(x-\sqrt{x^2-1}=\frac{x^2-\left(x^2-1\right)}{x+\sqrt{x^2-1}}=\frac{1}{x+\sqrt{x^2-1}}=t\)\(\Rightarrow x+\sqrt{x^2-1}=\frac{1}{t}\)

Ta có: \(\left(1+t\right)^{2015}+\left(1+\frac{1}{t}\right)^{2015}=2^{2016}\)(1)

Áp dụng Côsi ta có: 

\(1+t\ge2\sqrt{t}\Rightarrow\left(1+t\right)^{2015}\ge2^{2015}.\sqrt{t^{2015}}\)

\(1+\frac{1}{t}\ge\frac{2}{\sqrt{t}}\Rightarrow\left(1+\frac{1}{t}\right)^{2015}\ge\frac{2^{2015}}{\sqrt{t^{2015}}}\)

\(\Rightarrow\left(1+t\right)^{2015}+\left(1+\frac{1}{t}\right)^{2015}\ge2^{2015}\left(\sqrt{t^{2015}}+\frac{1}{\sqrt{t^{2015}}}\right)\)

\(\ge2^{2015}.2\sqrt{\sqrt{t^{2015}}.\frac{1}{\sqrt{t^{2015}}}}=2^{2016}\)

Dấu "=" xảy ra khi và chỉ khi t = 1.

Do đó, từ (1) => \(t=\frac{1}{x+\sqrt{x^2-1}}=1\Rightarrow x+\sqrt{x^2-1}=1\)

\(\Rightarrow1-x=\sqrt{x^2-1}\Rightarrow\left(1-x\right)^2=x^2-1\Leftrightarrow2-2x=0\Leftrightarrow x=1\)

Vậy: \(x=1\text{ là nghiệm (nguyên) duy nhất của phương trình.}\)

Bình luận (0)
DA
Xem chi tiết
GL
15 tháng 4 2019 lúc 21:40

Đặt\(\sqrt{x-2006}=a\)

=> \(A=\frac{a+2019-1}{a+2019}=1-\frac{1}{a+2019}\)

Để A đạt GTNN => a+2019 bé nhất, mà \(a+2019=\sqrt{x-2006}+2019\)

=> x-2006=0=> x=2006,lúc đó A=\(\frac{2018}{2019}\)

Vậy GTNN của A=\(\frac{2018}{2019}\)khi x=2006

Bình luận (0)
CT
15 tháng 4 2019 lúc 21:41

do x lớn hơn hoặc = 2006

=> x-2006 lớn hơn hoặc = 0

vậy A lớn hơn hoặc bằng 2008/2009

dấu = xảy ra khi x=2006

Bình luận (0)
DL
15 tháng 4 2019 lúc 22:40

\(A=\frac{\sqrt{x-2006}+2018}{\sqrt{x-2006}+2019}=1-\frac{1}{\sqrt{x-2006}+2019}\)

\(\sqrt{x-2006}\ge0\Rightarrow\sqrt{x-2006}+2019\ge0+2019=2019\)

\(\Rightarrow\frac{1}{\sqrt{x-2006}+2019}\le\frac{1}{2019}\Leftrightarrow1-\frac{1}{\sqrt{x-2006}+2019}\ge1-\frac{1}{2019}=\frac{2018}{2019}\Leftrightarrow A\ge\frac{2018}{2019}\)

Dấu "=" xảy ra khi :

\(\sqrt{x-2006}=0\Rightarrow x-2006=0\Leftrightarrow x=2006\)

Vậy GTNN của A là \(\frac{2018}{2019}\)khi \(x=2006.\)

Bình luận (0)
HY
Xem chi tiết
HG
Xem chi tiết
LL
Xem chi tiết
HN
30 tháng 4 2017 lúc 20:40

Điều kiện \(x^2-1\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)

Đặt \(x-\sqrt{x^2-1}=a\) thì ta có pt trở thành:

\(\left(1+a\right)^{2005}+\left(1+\dfrac{1}{a}\right)^{2005}=2^{2006}\)

Ta có:

\(\left(1+a\right)^{2005}+\left(1+\dfrac{1}{a}\right)^{2005}\ge2^{2005}\left(\sqrt{a^{2005}}+\dfrac{1}{\sqrt{a^{2005}}}\right)\ge2^{2006}\)

Đấu = xảy ra khi a = 1 hay

\(x-\sqrt{x^2-1}=1\)

\(\Leftrightarrow x=1\)

Bình luận (0)
CM
Xem chi tiết
TC
26 tháng 10 2019 lúc 21:38

\(A=\left(x-\sqrt{x}+\frac{1}{4}\right)-\frac{1}{4}\)

\(A=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)Dấu "=" xảy ra khi \(\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)

\(B=\left(\left(x-2005\right)-\sqrt{x-2005}+\frac{1}{4}\right)+\frac{8019}{4}\)

\(B=\left(\sqrt{x=2005}-\frac{1}{2}\right)^2+\frac{8019}{4}\ge\frac{8019}{4}\)

Dấu "=" xảy ra khi \(\sqrt{x-2005}=\frac{1}{2}\Rightarrow x-2005=\frac{1}{4}\Leftrightarrow x=\frac{8021}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa